Menu Close

e-4x-1-dx-




Question Number 94520 by john santu last updated on 19/May/20
∫ (√(e^(4x) +1)) dx
e4x+1dx
Answered by niroj last updated on 19/May/20
  ∫(√((e^x )^4 +1))  dx     Put e^x =t          e^x .dx=dt        dx= (1/t)dt    =∫(√(t^4 +1))   .(1/t)dt   =∫(√(t^2 (t^2 +(1/t^2 ))))   (1/t)dt    =∫ t (√(t^2 +(1/t^2 ))) (1/t)dt    =∫(√((t+(1/t))^2 −2))   dt      =∫(√((t+(1/t))^2 −((√2) )^2 ))   dt    = (((t+(1/t))(√(t^2 +(1/t^2 ))))/2)− ((((√2) )^2 )/2)log(t+(1/t)+(√(t^2 +(1/t^2 )))  )+C    =  ((((t^2 +1)/t).((√(t^4 +1))/t))/2)  −log (((t^2 +1)/t)+((√(t^4 +1))/t))+C    = (((t^2 +1)(√(t^4 +1)))/(2t^2 ))−log (((t^2 +1+(√(t^4 +1))  )/t))+C   = (((e^(2x) +1)((√(e^(4x) +1)) ))/(2e^(2x) )) −log (((e^(2x) +1+(√(e^(4x) +1)))/e^x ))+C //.
(ex)4+1dxPutex=tex.dx=dtdx=1tdt=t4+1.1tdt=t2(t2+1t2)1tdt=tt2+1t21tdt=(t+1t)22dt=(t+1t)2(2)2dt=(t+1t)t2+1t22(2)22log(t+1t+t2+1t2)+C=t2+1t.t4+1t2log(t2+1t+t4+1t)+C=(t2+1)t4+12t2log(t2+1+t4+1t)+C=(e2x+1)(e4x+1)2e2xlog(e2x+1+e4x+1ex)+C//.
Commented by i jagooll last updated on 19/May/20
cooll man ������
Commented by peter frank last updated on 19/May/20
thank you
thankyou
Commented by Mr.D.N. last updated on 19/May/20
great��
Commented by niroj last updated on 19/May/20
������
Answered by john santu last updated on 19/May/20
let u = e^(4x)  ⇒ dx = (du/(4u))  ∫ ((√(u+1))/(4u)) du = (1/4)∫ ((√(u+1))/u) du   set v = (√(u+1)) ⇒du = 2v dv   ∫ (1/4) ((2v^2 )/(v^2 −1)) dv = (1/2)∫ (1+(1/(v^2 −1))) dv  = (1/2)( v + (1/2)ln ∣((v−1)/(v+1))∣ )+ c   = (1/2)(√(e^(4x) +1)) + (1/4)ln ∣(((√(e^(4x) +1)) −1)/( (√(e^(4x) +1)) +1))∣ + c
letu=e4xdx=du4uu+14udu=14u+1udusetv=u+1du=2vdv142v2v21dv=12(1+1v21)dv=12(v+12lnv1v+1)+c=12e4x+1+14lne4x+11e4x+1+1+c
Commented by i jagooll last updated on 19/May/20
waw....funtastic
waw.funtastic
Answered by MJS last updated on 19/May/20
why not all at once?  ∫(√(e^(4x) +1))dx=       [t=(√(e^(4x) +1)) → dx=((√(e^(4x) +1))/(2e^(4x) ))dt]  =(1/2)∫(t^2 /(t^2 −1))dt=(t/2)+(1/4)ln ((t−1)/(t+1)) =...
whynotallatonce?e4x+1dx=[t=e4x+1dx=e4x+12e4xdt]=12t2t21dt=t2+14lnt1t+1=
Answered by mathmax by abdo last updated on 19/May/20
I =∫ (√(e^(4x) +1))dx   we do the changement (√(e^(4x) +1))=t ⇒  e^(4x) =t^2 −1 ⇒4x =ln(t^2 −1) ⇒x =(1/4)ln(t^2 −1) ⇒dx =(t/(2(t^2 −1)))dt  ⇒ I =(1/2)∫  t^2  ×(dt/(t^2 −1)) =(1/2)∫  ((t^2 −1+1)/(t^2 −1))dt  =(t/2) +(1/4)∫((1/(t−1))−(1/(t+1)))dt =(t/2) +(1/4)ln∣((t−1)/(t+1))∣ +C  =(1/2)(√(e^(4x) +1))+(1/4)ln∣(((√(e^(4x) +1))−1)/( (√(e^(4x) +1))+1))∣ +C
I=e4x+1dxwedothechangemente4x+1=te4x=t214x=ln(t21)x=14ln(t21)dx=t2(t21)dtI=12t2×dtt21=12t21+1t21dt=t2+14(1t11t+1)dt=t2+14lnt1t+1+C=12e4x+1+14lne4x+11e4x+1+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *