Menu Close

e-ax-sin-bx-dx-by-complex-number-




Question Number 115743 by bemath last updated on 28/Sep/20
∫ e^(ax) .sin bx dx =?  by complex number
eax.sinbxdx=?bycomplexnumber
Answered by Ar Brandon last updated on 28/Sep/20
I=∫e^(ax) sinbxdx=(1/(2i))∫e^(ax) ∙(e^(bxi) −e^(−bxi) )dx     =(1/(2i))∫(e^((a+bi)x) −e^((a−bi)x) )dx     =(1/(2i)){(e^((a+bi)x) /(a+bi))−(e^((a−bi)x) /(a−bi))}+C
I=eaxsinbxdx=12ieax(ebxiebxi)dx=12i(e(a+bi)xe(abi)x)dx=12i{e(a+bi)xa+bie(abi)xabi}+C
Commented by bemath last updated on 28/Sep/20
santuy bro. gave kudos
santuybro.gavekudos
Answered by Dwaipayan Shikari last updated on 28/Sep/20
∫e^(ax) .sinbx dx  =(1/(2i))∫e^(ax) (e^(bxi) −e^(−bxi) )  =(1/(2i))∫e^(x(a+bi)) −(1/(2i))∫e^(x(a−bi)) dx               =(e^(x(a+bi)) /(2i(a+bi)))−(e^(x(a−bi)) /(2i(a−bi)))  =(e^(xz) /(2iz))−(e^(xz^− ) /(2iz^− ))+C        (z=a+bi  z^− =a−bi)
eax.sinbxdx=12ieax(ebxiebxi)=12iex(a+bi)12iex(abi)dx=ex(a+bi)2i(a+bi)ex(abi)2i(abi)=exz2izexz2iz+C(z=a+biz=abi)
Answered by mathmax by abdo last updated on 28/Sep/20
∫  e^(ax)  sin(bx)dx  =Im(∫ e^(ax+ibx) dx) and  ∫ e^((a+ib)x) dx =(1/(a+ib)) e^((a+ib)x)  +c  =((a−ib)/(a^2  +b^2 )) .e^(ax) {cos(bx)+isin(bx)}  +c  =(e^(ax) /(a^2  +b^2 )){acos(bx)+iasin(bx)−ibcos(bx) +bsin(bx)} ⇒  ∫ e^(ax)  sin(bx)dx =(e^(ax) /(a^2 +b^2 ))(asin(bx)−bcos(bx)) +C
eaxsin(bx)dx=Im(eax+ibxdx)ande(a+ib)xdx=1a+ibe(a+ib)x+c=aiba2+b2.eax{cos(bx)+isin(bx)}+c=eaxa2+b2{acos(bx)+iasin(bx)ibcos(bx)+bsin(bx)}eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))+C

Leave a Reply

Your email address will not be published. Required fields are marked *