Menu Close

e-cos-1-x-dx-




Question Number 126230 by I want to learn more last updated on 18/Dec/20
∫ e^( cos^(− 1) (x))    dx
ecos1(x)dx
Answered by Olaf last updated on 18/Dec/20
F(x) = ∫e^(arccosx) dx  Let x = cosu, dx = −sinudu  F(x) = −∫e^u sinudu  F(x) = −[e^u sinu−∫e^u cosudu]  F(x) = −e^u sinu+[e^u cosu−∫e^u (−sinudu]  2F(x) = e^u cosu−e^u sinu  F(x) = (1/2)e^u (cosu−sinu)  F(x) = (1/2)e^(arccosx) (x−sin(arccosx))  F(x) = (1/2)e^(arccosx) (x−(√(1−x^2 ))) (+C)
F(x)=earccosxdxLetx=cosu,dx=sinuduF(x)=eusinuduF(x)=[eusinueucosudu]F(x)=eusinu+[eucosueu(sinudu]2F(x)=eucosueusinuF(x)=12eu(cosusinu)F(x)=12earccosx(xsin(arccosx))F(x)=12earccosx(x1x2)(+C)
Commented by I want to learn more last updated on 18/Dec/20
Thanks sir.
Thankssir.
Commented by I want to learn more last updated on 20/Dec/20
Thanks sir.
Thankssir.
Answered by mathmax by abdo last updated on 19/Dec/20
I=∫ e^(arcosx) dx  we do the changement arcosx=t ⇒x=cost ⇒  I=∫ e^t (−sint)dt =−∫ e^t sint dt =−Im(∫ e^(t+it) dt)  ∫ e^((1+i)t) dt =(1/(1+i))e^((1+i)t)  +c=((1−i)/2)e^t (cost +isint) +c  =(e^t /2){cost +isint −icost +sint} ⇒I=−(e^t /2)( sint−cost) +C  I =(e^(arcosx) /2)(x−(√(1−x^2 ))) +C
I=earcosxdxwedothechangementarcosx=tx=costI=et(sint)dt=etsintdt=Im(et+itdt)e(1+i)tdt=11+ie(1+i)t+c=1i2et(cost+isint)+c=et2{cost+isinticost+sint}I=et2(sintcost)+CI=earcosx2(x1x2)+C
Commented by I want to learn more last updated on 20/Dec/20
Thanks sir
Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *