Menu Close

e-e-x-x-x-




Question Number 128885 by naka3546 last updated on 11/Jan/21
e^e^x   = x  x = ?
$${e}^{{e}^{{x}} } \:=\:{x} \\ $$$${x}\:=\:? \\ $$
Commented by naka3546 last updated on 11/Jan/21
x ∈ R ? or x ∈ C ?
$${x}\:\in\:\mathbb{R}\:?\:{or}\:{x}\:\in\:\mathbb{C}\:? \\ $$
Commented by mr W last updated on 11/Jan/21
e^e^(...e^x )  =x ⇔ e^x =x ⇒ no real solution!
$${e}^{{e}^{…{e}^{{x}} } } ={x}\:\Leftrightarrow\:{e}^{{x}} ={x}\:\Rightarrow\:{no}\:{real}\:{solution}! \\ $$
Answered by mr W last updated on 11/Jan/21
e^x =x ∈ C  ⇒x=ln x  x=re^(iθ) =ln r+iθ=rcos θ+rsin θ i  ln r=r cos θ ⇒r=e^(r cos θ)   θ=r sin θ  ⇒r=(θ/(sin θ))   ...(I)  ⇒(θ/(sin θ))=e^(θ/(tan θ))    ...(II)  (θ, r)=(±1.3372, 1.3746), (±7.5886, 7.8639), ...  there are infinite solutions.
$${e}^{{x}} ={x}\:\in\:\mathbb{C} \\ $$$$\Rightarrow{x}=\mathrm{ln}\:{x} \\ $$$${x}={re}^{{i}\theta} =\mathrm{ln}\:{r}+{i}\theta={r}\mathrm{cos}\:\theta+{r}\mathrm{sin}\:\theta\:{i} \\ $$$$\mathrm{ln}\:{r}={r}\:\mathrm{cos}\:\theta\:\Rightarrow{r}={e}^{{r}\:\mathrm{cos}\:\theta} \\ $$$$\theta={r}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{r}=\frac{\theta}{\mathrm{sin}\:\theta}\:\:\:…\left({I}\right) \\ $$$$\Rightarrow\frac{\theta}{\mathrm{sin}\:\theta}={e}^{\frac{\theta}{\mathrm{tan}\:\theta}} \:\:\:…\left({II}\right) \\ $$$$\left(\theta,\:{r}\right)=\left(\pm\mathrm{1}.\mathrm{3372},\:\mathrm{1}.\mathrm{3746}\right),\:\left(\pm\mathrm{7}.\mathrm{5886},\:\mathrm{7}.\mathrm{8639}\right),\:… \\ $$$${there}\:{are}\:{infinite}\:{solutions}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *