Menu Close

e-i-2-2-x-2-sinx-1-x-2-4-dx-lim-x-2-2-x-log-x-8-dx-x-2-




Question Number 58940 by Tony Lin last updated on 01/May/19
e^(i∫_(−2) ^2 (x^2 sinx+(√(1−(x^2 /4))))dx) +lim_(x→2) ((∫_2 ^x log(x+8)dx)/(x−2))=?
ei22(x2sinx+1x24)dx+limx22xlog(x+8)dxx2=?
Commented by maxmathsup by imad last updated on 01/May/19
let A =∫_(−2) ^2 (x^2 sinx +(√(1−(x^2 /4))))dx ⇒ A =∫_(−2) ^2  x^2  sinx dx +∫_(−2) ^2 (√(1−(x^2 /4)))dx  x→x^2 sin(x) is odd function ⇒ ∫_(−2) ^2  x^2 sin(x)dx =0  ∫_(−2) ^2 (√(1−(x^2 /4)))dx =2 ∫_0 ^2 (√(1−(x^2 /4)))dx=_((x/2)=sin(t))   2 ∫_0 ^(π/2) (√(1−sin^2 t))(2cost)dt   =4 ∫_0 ^(π/2)   cos^2 t dt =4 ∫_0 ^(π/2)   ((1+cos(2t))/2) dt =2 ∫_0 ^(π/2)  (1+cos(2t))dt  =π   +[sin(2t)]_0 ^(π/2)  =π ⇒e^(i ∫_(−2) ^2 (x^2 sinx +(√(1−(x^2 /4))))dx ) =e^(iπ)  =−1  ∫_2 ^x  ln(t+8) dt =_(t+8 =u)    ∫_(10) ^(x+8)  ln(u) du =[uln(u)−u]_(10) ^(x+8)   =(x+8)ln(x+8)−(x+8) −10ln(10) +10 ⇒  lim_(x→2)     ((∫_2 ^x  ln(x+8)dx)/(x−2)) =lim_(x→2)    (((x+8)ln(x+8)−(x+8)−10ln(10) +10)/(x−2))  =lim_(x→2)   ((u^′ (x))/(v^′ (x)))    (using hospital theorem)    u(x)=(x+8)ln(x+8)−(x+8) −10ln(10) +10 ⇒  u^′ (x) =ln(x+8) +1 −1 =ln(x+8) ⇒u^′ (2) =ln(10)  v(x) =x−2 ⇒v^′ (x) =1 ⇒ lim_(x→2)   ((∫_2 ^x  ln(x+8))/(x−2)) dx  =ln(10) ⇒  e^(i∫_(−2) ^2 (....)) dx +lim_(x→2)     ((∫_2 ^x (....)dx)/(x−2)) =−1+ln(10)   here i have taken ln not log  because  log(x) =((ln(x))/(ln(10))) ....
letA=22(x2sinx+1x24)dxA=22x2sinxdx+221x24dxxx2sin(x)isoddfunction22x2sin(x)dx=0221x24dx=2021x24dx=x2=sin(t)20π21sin2t(2cost)dt=40π2cos2tdt=40π21+cos(2t)2dt=20π2(1+cos(2t))dt=π+[sin(2t)]0π2=πei22(x2sinx+1x24)dx=eiπ=12xln(t+8)dt=t+8=u10x+8ln(u)du=[uln(u)u]10x+8=(x+8)ln(x+8)(x+8)10ln(10)+10limx22xln(x+8)dxx2=limx2(x+8)ln(x+8)(x+8)10ln(10)+10x2=limx2u(x)v(x)(usinghospitaltheorem)u(x)=(x+8)ln(x+8)(x+8)10ln(10)+10u(x)=ln(x+8)+11=ln(x+8)u(2)=ln(10)v(x)=x2v(x)=1limx22xln(x+8)x2dx=ln(10)ei22(.)dx+limx22x(.)dxx2=1+ln(10)hereihavetakenlnnotlogbecauselog(x)=ln(x)ln(10).
Commented by maxmathsup by imad last updated on 01/May/19
if we take log(ddcimal log.) the result will be −1+1=0
ifwetakelog(ddcimallog.)theresultwillbe1+1=0
Commented by Tony Lin last updated on 02/May/19
thanks,sir XD
thanks,sirXD
Answered by tanmay last updated on 02/May/19
log(x+8)=(dF/dx)  ∫_2 ^x (dF/dx)×dx  =F(x)−F(2)  now  lim_(x→2)  ((F(x)−F(2))/(x−2))  h=x−2  lim_(h→0)  ((F(h+2)−F(2))/h)  =F^′ (2)  =log(2+8)=log10
log(x+8)=dFdx2xdFdx×dx=F(x)F(2)nowlimx2F(x)F(2)x2h=x2limh0F(h+2)F(2)h=F(2)=log(2+8)=log10
Commented by Tony Lin last updated on 02/May/19
well done,sir
welldone,sir

Leave a Reply

Your email address will not be published. Required fields are marked *