Menu Close

E-is-a-vectorial-plane-his-base-is-B-i-j-f-is-an-endomorphism-defined-by-f-i-2-2-i-2-2-j-and-f-j-2-2-i-2-2-j-1-Show-that-ker-f-is-a-vectorial-straigh-li




Question Number 97380 by mathocean1 last updated on 07/Jun/20
E is a vectorial plane. his base is   B=(i^→ ;j^→ ). f is an endomorphism defined  by f(i^→ )=−((√2)/2)i^→ +((√2)/2)j^→  and f(j^→ )=((√2)/2)i^→ −((√2)/2)j^→   1)Show that ker f is a vectorial straigh  line and his base is e_1 ^→ =(√2)i^→ +(√2)j^→   2)show that G, the set of vectors u^→    ∈ E such as f(u^→ )=(√2)u^→  is a vectorial straigh  line and his Base is e_(2  ) ^→ =i^→ +j^→   3) Determine the matrix A′ of f in  B′ if B′=(e_1 ^→ ;e_2 ^→ ).
Eisavectorialplane.hisbaseisB=(i;j).fisanendomorphismdefinedbyf(i)=22i+22jandf(j)=22i22j1)Showthatkerfisavectorialstraighlineandhisbaseise1=2i+2j2)showthatG,thesetofvectorsuEsuchasf(u)=2uisavectorialstraighlineandhisBaseise2=i+j3)DeterminethematrixAoffinBifB=(e1;e2).

Leave a Reply

Your email address will not be published. Required fields are marked *