Menu Close

E-is-a-vectorial-plane-in-B-i-j-base-f-is-an-endomorphism-of-E-f-i-4i-j-and-f-j-2i-j-u-xi-yj-E-and-x-y-R-1-Determinate-f-1-u-




Question Number 101645 by mathocean1 last updated on 03/Jul/20
E is a vectorial plane in B=(i^→ ,j^→ )  base. f is an endomorphism of E.  f(i^→ )=4i^→ −j^→  and f(j^→ )=2i^→ +j^→ .  u^→ =xi^→ +yj^→  ∈ E and x,y ∈ R.  1) Determinate f^( −1) (u).
EisavectorialplaneinB=(i,j)base.fisanendomorphismofE.f(i)=4ijandf(j)=2i+j.u=xi+yjEandx,yR.1)Determinatef1(u).
Answered by mathmax by abdo last updated on 03/Jul/20
M(f,B) =  (((4             2)),((−1         1)) )  we have u  ((x),(y) )  f^(−1) (u)→M^(−1) .u   let find M^(−1)     M is root of (4−u)(1−u)+2 =0 ⇒  (u−4)(u−1)+2 =0 ⇒u^2 −5u +6 =0 ⇒M^2 −5M +6I =0 ⇒  M^2 −5M =−6I ⇒−(1/6)M.(M−5I) =I ⇒M^(−1)  =−(1/6)(M−5I)  = (((−(2/3)          −(1/3))),(((1/6)                   −(1/6))) ) +  ((((5/6)         0)),((0            (5/6))) ) =  (((−(1/6)           −(1/3))),((  (1/6)                    (2/3))) )  let f^(−1) (u) = ((x^′ ),(y^′ ) )  ⇒ ((x^′ ),(y^′ ) )  =M^(−1) .u =  (((−(1/6)         −(1/3))),(((1/6)                   (2/3))) ) . ((x),(y) )  = (((−(x/6)−(y/3))),(((x/6)   +((2y)/3))) )
M(f,B)=(4211)wehaveu(xy)f1(u)M1.uletfindM1Misrootof(4u)(1u)+2=0(u4)(u1)+2=0u25u+6=0M25M+6I=0M25M=6I16M.(M5I)=IM1=16(M5I)=(23131616)+(560056)=(16131623)letf1(u)=(xy)(xy)=M1.u=(16131623).(xy)=(x6y3x6+2y3)

Leave a Reply

Your email address will not be published. Required fields are marked *