Menu Close

E-is-a-vectorial-space-wich-has-as-base-i-j-k-P-x-y-z-such-that-5x-y-z-0-1-Determinate-one-base-of-P-




Question Number 128347 by mathocean1 last updated on 06/Jan/21
E is a vectorial space wich has as base   (i^→ ,j^→ ,k^→ ).   P={ ((x),(y),(( z)) ) such that 5x+y+z=0}  1. Determinate one base of P.
$${E}\:{is}\:{a}\:{vectorial}\:{space}\:{wich}\:{has}\:{as}\:{base}\: \\ $$$$\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}},\overset{\rightarrow} {{k}}\right).\: \\ $$$${P}=\left\{\begin{pmatrix}{{x}}\\{{y}}\\{\:{z}}\end{pmatrix}\:{such}\:{that}\:\mathrm{5}{x}+{y}+{z}=\mathrm{0}\right\} \\ $$$$\mathrm{1}.\:{Determinate}\:{one}\:{base}\:{of}\:{P}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *