Menu Close

e-pi-gt-pi-e-or-e-pi-lt-pi-e-




Question Number 32897 by artibunja last updated on 06/Apr/18
  e^π  > π^e   or   e^π <π^e  ?
eπ>πeoreπ<πe?
Answered by MJS last updated on 06/Apr/18
e^x =x^e ; x>1 ⇒ x=e ⇒ ∀x>e: e^x >x^e   π>e ⇒ e^π >π^e
ex=xe;x>1x=ex>e:ex>xeπ>eeπ>πe
Commented by MJS last updated on 06/Apr/18
interestingly for a^x =x^a  with a>1  and x>1 two solutions seem to  exist (i.e. 2^x =x^2  ⇒ x=2∨x=4;  3^x =x^3  ⇒ x=3∨x≈2.47805) but  for a=e there′s only one: x=e    can anybody further explain this?
interestinglyforax=xawitha>1andx>1twosolutionsseemtoexist(i.e.2x=x2x=2x=4;3x=x3x=3x2.47805)butfora=etheresonlyone:x=ecananybodyfurtherexplainthis?
Commented by mrW2 last updated on 06/Apr/18
solution for a^x =x^a  (a>0):  a^(x/a) =x  e^((x/a) ln a) =x  (−(x/a) ln a) e^(−(x/a) ln a) =−((ln a)/a)  ⇒−(x/a) ln a=W(−((ln a)/a))  ⇒x=−(a/(ln a)) W(−((ln a)/a))=−((W(−ln a^(1/a) ))/(ln a^(1/a) ))  if a=e: one solution  if a≠e: two solutions
solutionforax=xa(a>0):axa=xexalna=x(xalna)exalna=lnaaxalna=W(lnaa)x=alnaW(lnaa)=W(lna1a)lna1aifa=e:onesolutionifae:twosolutions
Answered by Tinkutara last updated on 06/Apr/18
Consider f(x)=y=x^(1/x)   (dy/dx)=(y/x^2 )(1−ln x)  If x<e, f(x) is increasing.  If x>e, f(x) is decreasing.  ∴ e^(1/e) >π^(1/π)   e^π >π^e
Considerf(x)=y=x1xdydx=yx2(1lnx)Ifx<e,f(x)isincreasing.Ifx>e,f(x)isdecreasing.e1e>π1πeπ>πe
Answered by artibunja last updated on 06/Apr/18

Leave a Reply

Your email address will not be published. Required fields are marked *