Menu Close

e-sin-1-x-1-x-2-dx-




Question Number 176185 by gloriousman last updated on 14/Sep/22
∫(e^(sin^(−1) x) /( (√(1−x_ ^2 )))) dx
$$\int\frac{\mathrm{e}^{\mathrm{sin}^{−\mathrm{1}} \mathrm{x}} }{\:\sqrt{\mathrm{1}−\mathrm{x}_{} ^{\mathrm{2}} }}\:\mathrm{dx} \\ $$
Commented by leodera last updated on 14/Sep/22
∫(e^(sin^(−1) x) /( (√(1−x^2 ))))dx = ∫e^(sin^(−1) x) d(sin^(−1) x)  = e^(sin^(−1) x)  + c
$$\int\frac{{e}^{\mathrm{sin}^{−\mathrm{1}} \mathrm{x}} }{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}\:=\:\int{e}^{\mathrm{sin}^{−\mathrm{1}} \mathrm{x}} \mathrm{d}\left(\mathrm{sin}^{−\mathrm{1}} \mathrm{x}\right) \\ $$$$=\:\mathrm{e}^{\mathrm{sin}^{−\mathrm{1}} \mathrm{x}} \:+\:\mathrm{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *