Menu Close

e-t-ln-1-e-t-1-e-t-dt-




Question Number 17512 by tawa tawa last updated on 06/Jul/17
∫ ((e^(−t)  ln(1 + e^(−t) ))/(1 + e^(−t) )) dt
$$\int\:\frac{\mathrm{e}^{−\mathrm{t}} \:\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{e}^{−\mathrm{t}} \right)}{\mathrm{1}\:+\:\mathrm{e}^{−\mathrm{t}} }\:\mathrm{dt} \\ $$
Answered by sma3l2996 last updated on 07/Jul/17
I=∫((e^(−t) ln(1+e^(−t) ))/(1+e^(−t) ))dt=∫(−ln(1+e^(−t) ))′ln(1+e^(−t) )  =−(1/2)(ln(1+e^(−t) ))^2 +C
$${I}=\int\frac{{e}^{−{t}} {ln}\left(\mathrm{1}+{e}^{−{t}} \right)}{\mathrm{1}+{e}^{−{t}} }{dt}=\int\left(−{ln}\left(\mathrm{1}+{e}^{−{t}} \right)\right)'{ln}\left(\mathrm{1}+{e}^{−{t}} \right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\mathrm{1}+{e}^{−{t}} \right)\right)^{\mathrm{2}} +{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *