Question Number 36459 by rahul 19 last updated on 02/Jun/18
$$\int\:\mathrm{e}^{\mathrm{tan}\:\theta} \left(\mathrm{sec}\:\theta\:−\mathrm{sin}\:\theta\right)\:\mathrm{d}\theta\:=\:? \\ $$
Answered by ajfour last updated on 02/Jun/18
$${let}\:\mathrm{tan}\:\theta={t} \\ $$$$\Rightarrow\:{I}=\int{e}^{{t}} \left(\mathrm{sec}\:\theta−\mathrm{sin}\:\theta\right)\mathrm{cos}\:^{\mathrm{2}} \theta{dt} \\ $$$$\:\:\:\:\:\:\:\:=\int{e}^{{t}} \left(\mathrm{cos}\:\theta−\frac{\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta}\right){dt} \\ $$$$\:\:\:\:\:\:\:=\int{e}^{{t}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}−\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\right){dt} \\ $$$$\:\:\:\:\:\:=\int{e}^{{t}} \left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}+\frac{{d}}{{dt}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)\right]{dt} \\ $$$$\:\:\:\:\:\:=\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}+{c} \\ $$$$\:\:\:\:\:{I}\:=\:{e}^{\mathrm{tan}\:\theta} \mathrm{cos}\:\theta\:+{c}\:. \\ $$
Commented by rahul 19 last updated on 02/Jun/18
Thank you sir
Answered by MJS last updated on 02/Jun/18
$$\mathrm{lol},\:\mathrm{tricky}… \\ $$$$\int\mathrm{e}^{\mathrm{tan}\:\theta} \left(\mathrm{sec}\:\theta−\mathrm{sin}\:\theta\right){d}\theta= \\ $$$$=\int\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{sec}\:\theta\:{d}\theta−\int\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{sin}\:\theta\:{d}\theta= \\ $$$$\:\:\:\:\:\begin{bmatrix}{{f}'=\mathrm{sin}\:\theta\:\Rightarrow\:{f}=−\mathrm{cos}\:\theta}\\{{g}=\mathrm{e}^{\mathrm{tan}\:\theta} \:\Rightarrow\:{g}'=\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{sec}^{\mathrm{2}} \:\theta}\\{\int{f}'{g}={fg}−\int{fg}'}\end{bmatrix} \\ $$$$=\int\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{sec}\:\theta\:{d}\theta+\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{cos}\:\theta−\int\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{cos}\:\theta\:\mathrm{sec}^{\mathrm{2}} \:\theta\:{d}\theta= \\ $$$$=\mathrm{e}^{\mathrm{tan}\:\theta} \mathrm{cos}\:\theta\:+{C} \\ $$
Commented by rahul 19 last updated on 02/Jun/18
$$\mathrm{How}\:\:\:\mathrm{fg}=\:\int\mathrm{f}^{'} \mathrm{g}\:+\:\int\mathrm{fg}'\:?? \\ $$$$\mathrm{Integration}\:\mathrm{by}\:\mathrm{parts}\:\mathrm{says}, \\ $$$$\int\mathrm{fg}\:=\:\mathrm{f}\int\mathrm{g}\:−\int\mathrm{f}'\int\mathrm{g}. \\ $$
Commented by MJS last updated on 02/Jun/18
$${https}://{en}.{wikipedia}.{org}/{wiki}/{Integration\_by\_parts} \\ $$
Commented by rahul 19 last updated on 02/Jun/18
$$\mathrm{Sir}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to}\:\mathrm{integrate}\:\mathrm{say} \\ $$$$\int{x}\mathrm{sin}\:{x}\:\mathrm{then}\:\mathrm{g}=\mathrm{sin}\:{x}\:,\:\mathrm{f}={x}\:.\:\left(\mathrm{ILATE}\:\right) \\ $$$$\Rightarrow\:\int\mathrm{g}=\:−\mathrm{cos}\:{x}\:,\:\mathrm{f}'\:=\:\mathrm{1}. \\ $$$$\int\mathrm{fg}=\:\mathrm{f}\int\mathrm{g}\:−\:\int\mathrm{f}'\:\int\mathrm{g} \\ $$$$\:\Rightarrow\:{x}\left(−\mathrm{cos}\:{x}\right)\:−\:\int−\left(\mathrm{cos}\:{x}\right) \\ $$$$\Rightarrow\:−{x}\mathrm{cos}\:{x}+\mathrm{sin}\:{x}+{c}. \\ $$
Commented by MJS last updated on 02/Jun/18
$$\mathrm{we}\:\mathrm{come}\:\mathrm{from}\:\mathrm{differentation}: \\ $$$$\left({uv}\right)'={u}'{v}+{uv}' \\ $$$$\mathrm{now}\:\mathrm{integrate}\:\mathrm{both}\:\mathrm{sides}: \\ $$$${uv}=\int{u}'{v}+\int{uv}' \\ $$$$\mathrm{that}'\mathrm{s}\:\mathrm{how}\:\mathrm{I}\:\mathrm{learned}\:\mathrm{it}… \\ $$
Commented by rahul 19 last updated on 02/Jun/18
$$\mathrm{Is}\:\mathrm{this}\:\mathrm{also}\:\mathrm{called}\:\mathrm{integration}\:\mathrm{by}\:\mathrm{parts}? \\ $$$$\mathrm{Anyways},\mathrm{thanks}!! \\ $$