Menu Close

e-tan-sec-sin-d-




Question Number 36459 by rahul 19 last updated on 02/Jun/18
∫ e^(tan θ) (sec θ −sin θ) dθ = ?
etanθ(secθsinθ)dθ=?
Answered by ajfour last updated on 02/Jun/18
let tan θ=t  ⇒ I=∫e^t (sec θ−sin θ)cos^2 θdt          =∫e^t (cos θ−((sin θ)/(1+tan^2 θ)))dt         =∫e^t ((1/( (√(1+t^2 ))))−(t/((1+t^2 )^(3/2) )))dt        =∫e^t [(1/( (√(1+t^2 ))))+(d/dt)((1/( (√(1+t^2 )))))]dt        = (e^t /( (√(1+t^2 ))))+c       I = e^(tan θ) cos θ +c .
lettanθ=tI=et(secθsinθ)cos2θdt=et(cosθsinθ1+tan2θ)dt=et(11+t2t(1+t2)3/2)dt=et[11+t2+ddt(11+t2)]dt=et1+t2+cI=etanθcosθ+c.
Commented by rahul 19 last updated on 02/Jun/18
Thank you sir ����
Answered by MJS last updated on 02/Jun/18
lol, tricky...  ∫e^(tan θ) (sec θ−sin θ)dθ=  =∫e^(tan θ) sec θ dθ−∫e^(tan θ) sin θ dθ=        [((f′=sin θ ⇒ f=−cos θ)),((g=e^(tan θ)  ⇒ g′=e^(tan θ) sec^2  θ)),((∫f′g=fg−∫fg′)) ]  =∫e^(tan θ) sec θ dθ+e^(tan θ) cos θ−∫e^(tan θ) cos θ sec^2  θ dθ=  =e^(tan θ) cos θ +C
lol,trickyetanθ(secθsinθ)dθ==etanθsecθdθetanθsinθdθ=[f=sinθf=cosθg=etanθg=etanθsec2θfg=fgfg]=etanθsecθdθ+etanθcosθetanθcosθsec2θdθ==etanθcosθ+C
Commented by rahul 19 last updated on 02/Jun/18
How   fg= ∫f^′ g + ∫fg′ ??  Integration by parts says,  ∫fg = f∫g −∫f′∫g.
Howfg=fg+fg??Integrationbypartssays,fg=fgfg.
Commented by MJS last updated on 02/Jun/18
https://en.wikipedia.org/wiki/Integration_by_parts
https://en.wikipedia.org/wiki/Integration_by_parts
Commented by rahul 19 last updated on 02/Jun/18
Sir if you want to integrate say  ∫xsin x then g=sin x , f=x . (ILATE )  ⇒ ∫g= −cos x , f′ = 1.  ∫fg= f∫g − ∫f′ ∫g   ⇒ x(−cos x) − ∫−(cos x)  ⇒ −xcos x+sin x+c.
Sirifyouwanttointegratesayxsinxtheng=sinx,f=x.(ILATE)g=cosx,f=1.fg=fgfgx(cosx)(cosx)xcosx+sinx+c.
Commented by MJS last updated on 02/Jun/18
we come from differentation:  (uv)′=u′v+uv′  now integrate both sides:  uv=∫u′v+∫uv′  that′s how I learned it...
wecomefromdifferentation:(uv)=uv+uvnowintegratebothsides:uv=uv+uvthatshowIlearnedit
Commented by rahul 19 last updated on 02/Jun/18
Is this also called integration by parts?  Anyways,thanks!!
Isthisalsocalledintegrationbyparts?Anyways,thanks!!

Leave a Reply

Your email address will not be published. Required fields are marked *