Menu Close

e-x-1-sin-x-1-cos-x-dx-




Question Number 59344 by rahul 19 last updated on 08/May/19
∫ e^x (((1−sin x)/(1−cos x)))dx = ?
ex(1sinx1cosx)dx=?
Answered by MJS last updated on 08/May/19
the trick is this:  ((1−sin x)/(1−cos x))=(1/(1−cos x))−((sin x)/(1−cos x))=(1/(2sin^2  (x/2)))−(1/(tan (x/2)))=  =(1/2)csc^2  (x/2) −cot (x/2)  so we have  ∫e^x (((1−sin x)/(1−cos x)))dx=(1/2)∫e^x csc^2  (x/2) dx−∫e^x cot (x/2) dx  now solve the 2^(nd)  one by parts  ∫f′g=fg−∫fg′  f′=f=e^x   g=cot (x/2) ⇒ g′=−((csc^2  x)/2)  ∫e^x cot (x/2) dx=e^x cot (x/2) +(1/2)∫e^x csc^2  (x/2) dx  ⇒  ∫e^x (((1−sin x)/(1−cos x)))dx=−e^x cot (x/2) +C
thetrickisthis:1sinx1cosx=11cosxsinx1cosx=12sin2x21tanx2==12csc2x2cotx2sowehaveex(1sinx1cosx)dx=12excsc2x2dxexcotx2dxnowsolvethe2ndonebypartsfg=fgfgf=f=exg=cotx2g=csc2x2excotx2dx=excotx2+12excsc2x2dxex(1sinx1cosx)dx=excotx2+C
Commented by rahul 19 last updated on 08/May/19
thank you sir.
thankyousir.
Commented by MJS last updated on 08/May/19
you're welcome; please check my answers before using them because I'm a typo-lover ��
Commented by rahul 19 last updated on 08/May/19
well, I already have answers to almost all the Q., I post here! All I want is "trick" .��
Commented by malwaan last updated on 09/May/19
fantastic sir !  what is typo−lover?
fantasticsir!whatistypolover?
Answered by tanmay last updated on 08/May/19
∫e^x (((1−2sin(x/2)cos(x/2))/(2sin^2 (x/2))))dx  ∫(e^x ×((cosec^2 (x/2))/2)−e^x ×cot(x/2))dx  (−1)∫e^x cot(x/2)−e^x ×((cosec^2 (x/2))/2)dx  (−1)∫[cot(x/2)×(de^x /dx)+e^x ×(d/dx)(cot(x/2))]dx  (−1)∫(d/dx)(e^x cot(x/2))dx  −e^x cot(x/2)+c
ex(12sinx2cosx22sin2x2)dx(ex×cosec2x22ex×cotx2)dx(1)excotx2ex×cosec2x22dx(1)[cotx2×dexdx+ex×ddx(cotx2)]dx(1)ddx(excotx2)dxexcotx2+c
Commented by rahul 19 last updated on 09/May/19
thank you sir!

Leave a Reply

Your email address will not be published. Required fields are marked *