Menu Close

e-x-2-dx-as-an-infinite-series-Hence-investigate-its-converge-




Question Number 56060 by necx1 last updated on 09/Mar/19
∫e^(−x^2 ) dx as an infinite series.Hence  investigate its converge.
ex2dxasaninfiniteseries.Henceinvestigateitsconverge.
Commented by maxmathsup by imad last updated on 09/Mar/19
we have e^(−x^2 ) =Σ_(n=0) ^∞   (((−1)^n x^(2n) )/(n!)) ⇒ ∫ e^(−x^2 ) dx = Σ_(n=0) ^∞ (((−1)^n )/(n!)) ∫ x^(2n) dx  =Σ_(n=0) ^∞   (((−1)^n )/((2n+1)n!)) x^(2n+1)     let find R the radius of convergene  let u_n (x) =(((−1)^n x^(2n+1) )/((2n+1)n!)) ⇒ for x≠0   ∣((u_(n+1) (x))/u_(n(x)) )∣ =∣((∣x∣^(2n+3) )/((2n+3)!(n+1)!)) (((2n+1)n!)/x^(2n+1) )∣ =((2n+1)/((2n+3)(n+1))) ∣x∣^2  →0 (n→+∞) ⇒  ⇒ R =+∞  .
wehaveex2=n=0(1)nx2nn!ex2dx=n=0(1)nn!x2ndx=n=0(1)n(2n+1)n!x2n+1letfindRtheradiusofconvergeneletun(x)=(1)nx2n+1(2n+1)n!forx0un+1(x)un(x)=∣x2n+3(2n+3)!(n+1)!(2n+1)n!x2n+1=2n+1(2n+3)(n+1)x20(n+)R=+.
Commented by necx1 last updated on 09/Mar/19
Thanks for the help tho I really do not  understand. Please shed more light
ThanksforthehelpthoIreallydonotunderstand.Pleaseshedmorelight
Commented by maxmathsup by imad last updated on 09/Mar/19
sir take a look  at cknvergence of serie subject ...
sirtakealookatcknvergenceofseriesubject

Leave a Reply

Your email address will not be published. Required fields are marked *