e-x-5-8x-2-dx-pi-4-2-e-x-5-erfi-2-2-x-5-pi-4-128-2-super-erf-hyper-2-2-x-c-where-super-erf-hyper-t-is-super-function-in-D-2-and-D-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 98151 by M±th+et+s last updated on 11/Jun/20 ∫ex5+8x2dx=π42ex5erfi(22x)−5π4(128)2(super−erf(hyper)(22x))+cwhere[super−erf(hyper)(t)]issuper−functioninD2and[Dn] Answered by maths mind last updated on 12/Jun/20 ididntfindthissuper−erfhyoer(t)canyouexpressdefinition Commented by M±th+et+s last updated on 12/Jun/20 idon′tthinkwecansolvethiswithoutusingnewspecialfunctionslikethisoneitriedwitbhypergeometricfunctionandmejierG−function(specialhighfunction)butididn′tfindanysolutions.andipostedthisquestionbecausemybeyouhaveanideatosolvebecauseyoualwaysdo.irespectyourmindsirtoprof.mathmind Answered by M±th+et+s last updated on 12/Jun/20 I=∫ex5+8x2dx∫ex5e8x2dx{u(x)=ex5du=5x4ex5dv=e8x2v=14π2erfi(22x)whereerfi(y)istheimaginaryerorfunctionI=π42ex5erfi(22x)−5π42∫x4ex5erfi(22x)dx…✠I1=∫x4ex5erfi(22x)dx;let22x=udx=122dyI1=11282∫y4e11282y5erfi(y)dy=r∫y4ery5erfi(y)dy;(r=11282∈R)buterfi(y)=iπ∑∞k=0(−1)k−1.H2k+i(iy)23k+12.k!(2k+1)andJ=∫yn.ery.erfi(y)dyJ=−n!π(−r)−(n+1)exp(−r24).∑nm=0(−r)mm!.∑mk=0(mk)(−r2)m−k(r2+y)k+1.[(−(r2+y)2+y)2]2.Γ(k+12;−(r2+y)2]−r−(n+1).erfi(y)Γ(A+1,ny)n∈Nso⇒⇒Γ(n+1,ry);n∈NsuperintegrativeconversionTsuper−T−1[∫y4ery5erfi(y)dy]=d(super−erfhyper(y))thenI1=r∫y4ery5erfi(y)dy=r∫d(super−erfhyper(y))I1=rsuper−erf(hyper)(y)+c=11282super−erf(hyper)(22x)+csoI=π42ex5erfi(22x)−5π4(128)2[super−erfhyper(22x)]+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-98148Next Next post: lim-x-0-cos-2x-cos-4x-cos-8x-3x-csc-2x-2x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.