Menu Close

e-x-dx-




Question Number 90023 by Rio Michael last updated on 20/Apr/20
 ∫ e^(∣x∣)  dx = ???
$$\:\int\:{e}^{\mid{x}\mid} \:{dx}\:=\:??? \\ $$
Answered by MJS last updated on 21/Apr/20
e^(∣x∣) = { ((e^(−x) ; x<0)),((e^x ; x≥0)) :} ⇒ ∫e^(∣x∣) dx= { ((−e^(−x) +C; x<0)),((e^x +C; x≥0)) :}
$$\mathrm{e}^{\mid{x}\mid} =\begin{cases}{\mathrm{e}^{−{x}} ;\:{x}<\mathrm{0}}\\{\mathrm{e}^{{x}} ;\:{x}\geqslant\mathrm{0}}\end{cases}\:\Rightarrow\:\int\mathrm{e}^{\mid{x}\mid} {dx}=\begin{cases}{−\mathrm{e}^{−{x}} +{C};\:{x}<\mathrm{0}}\\{\mathrm{e}^{{x}} +{C};\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *