Menu Close

e-x-e-2x-4-dx-




Question Number 156600 by ZiYangLee last updated on 13/Oct/21
∫ (e^x /(e^(2x) +4)) dx =?
$$\int\:\frac{{e}^{{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{4}}\:{dx}\:=?\: \\ $$
Answered by gsk2684 last updated on 13/Oct/21
put e^x =t  e^x  dx=dt  ∫(1/(t^2 +2^2 ))dt  =(1/2)tan^(−1) ((t/2))+c  =(1/2)tan^(−1) ((e^x /2))+c
$${put}\:{e}^{{x}} ={t} \\ $$$${e}^{{x}} \:{dx}={dt} \\ $$$$\int\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{t}}{\mathrm{2}}\right)+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{e}^{{x}} }{\mathrm{2}}\right)+{c}\: \\ $$
Answered by physicstutes last updated on 13/Oct/21
Another cool approach.  ∫(e^x /(e^(2x) +4))dx  = ∫(1/(e^(2x) +4)) e^x dx  let u = e^x  ⇒ du = e^x dx  ⇒ ∫(du/(u^2 +4))du = (1/2)tan^(−1) ((u/2))+k                             = (1/2) tan^(−1) ((e^x /2))+k
$$\mathrm{Another}\:\mathrm{cool}\:\mathrm{approach}. \\ $$$$\int\frac{{e}^{{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{4}}{dx}\:\:=\:\int\frac{\mathrm{1}}{{e}^{\mathrm{2}{x}} +\mathrm{4}}\:{e}^{{x}} {dx} \\ $$$$\mathrm{let}\:{u}\:=\:{e}^{{x}} \:\Rightarrow\:{du}\:=\:{e}^{{x}} {dx} \\ $$$$\Rightarrow\:\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{4}}{du}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{u}}{\mathrm{2}}\right)+{k} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{e}^{{x}} }{\mathrm{2}}\right)+{k} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *