Menu Close

e-x-e-x-dx-




Question Number 13365 by tawa tawa last updated on 19/May/17
∫  e^((x + e^x ))   dx
$$\int\:\:\mathrm{e}^{\left(\mathrm{x}\:+\:\mathrm{e}^{\mathrm{x}} \right)} \:\:\mathrm{dx} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17
Commented by tawa tawa last updated on 19/May/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by ajfour last updated on 19/May/17
I=∫e^((e^x )) e^x dx  let e^x =t  then  e^x dx=dt  I=∫e^t dt=e^t +C     =e^((e^x )) +C .
$${I}=\int{e}^{\left({e}^{{x}} \right)} {e}^{{x}} {dx} \\ $$$${let}\:{e}^{{x}} ={t} \\ $$$${then}\:\:{e}^{{x}} {dx}={dt} \\ $$$${I}=\int{e}^{{t}} {dt}={e}^{{t}} +{C} \\ $$$$\:\:\:={e}^{\left({e}^{{x}} \right)} +{C}\:. \\ $$
Commented by tawa tawa last updated on 19/May/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *