Menu Close

e-x-ln-x-dx-




Question Number 166702 by metamorfose last updated on 25/Feb/22
∫e^x ln(x)dx=..???
$$\int{e}^{{x}} {ln}\left({x}\right){dx}=..??? \\ $$
Commented by mkam last updated on 25/Feb/22
u = lnx → du = (dx/x)  , dv = e^x  ⇒ v = e^x     I= e^x lnx − ∫ (e^x /x) dx  = e^x lnx − Ei(x) + C
$${u}\:=\:{lnx}\:\rightarrow\:{du}\:=\:\frac{{dx}}{{x}}\:\:,\:{dv}\:=\:{e}^{{x}} \:\Rightarrow\:{v}\:=\:{e}^{{x}} \\ $$$$ \\ $$$${I}=\:{e}^{{x}} {lnx}\:−\:\int\:\frac{{e}^{{x}} }{{x}}\:{dx}\:\:=\:{e}^{{x}} {lnx}\:−\:{Ei}\left({x}\right)\:+\:{C}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *