Menu Close

e-x-Lnxdx-




Question Number 63881 by mmkkmm000m last updated on 10/Jul/19
∫e^x /Lnxdx
$$\int{e}^{{x}} /{Lnxdx} \\ $$
Commented by mathmax by abdo last updated on 11/Jul/19
let A =∫ (e^x /(lnx))dx  changement lnx =t give  A =∫ (e^e^t  /t) e^t  dt =∫  (e^(e^t +t) /t) dt   we have e^z  =Σ_(n=0) ^∞  (z^n /(n!)) ⇒  e^(e^t  +1)   =Σ_(n=0) ^∞   (((e^t  +t)^n )/(n!)) =Σ_(n=0) ^∞  (1/(n!))(Σ_(k=0) ^n   C_n ^k  e^(kt)  t^(n−k) ) ⇒  A =Σ_(n=0) ^∞ (1/(n!))(Σ_(k=0) ^n  C_n ^k  ∫ e^(kt)  t^(n−k) dt)  =Σ_(n=0) ^∞ (1/(n!))Σ_(k=0) ^n W_k     +C  wih  W_k =∫ e^(kt)  t^(n−k)  dt
$${let}\:{A}\:=\int\:\frac{{e}^{{x}} }{{lnx}}{dx}\:\:{changement}\:{lnx}\:={t}\:{give} \\ $$$${A}\:=\int\:\frac{{e}^{{e}^{{t}} } }{{t}}\:{e}^{{t}} \:{dt}\:=\int\:\:\frac{{e}^{{e}^{{t}} +{t}} }{{t}}\:{dt}\:\:\:{we}\:{have}\:{e}^{{z}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{z}^{{n}} }{{n}!}\:\Rightarrow \\ $$$${e}^{{e}^{{t}} \:+\mathrm{1}} \:\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left({e}^{{t}} \:+{t}\right)^{{n}} }{{n}!}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:{e}^{{kt}} \:{t}^{{n}−{k}} \right)\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}!}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\int\:{e}^{{kt}} \:{t}^{{n}−{k}} {dt}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}!}\sum_{{k}=\mathrm{0}} ^{{n}} {W}_{{k}} \:\:\:\:+{C}\:\:{wih}\:\:{W}_{{k}} =\int\:{e}^{{kt}} \:{t}^{{n}−{k}} \:{dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *