Menu Close

e-x-logx-




Question Number 115696 by Dwaipayan Shikari last updated on 27/Sep/20
e^x =logx
$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$
Commented by Dwaipayan Shikari last updated on 27/Sep/20
e^x =logx  e^e^x  =x  e^e^e^e^d^d^d      =x  e^x =x  x=logx  e^(−logx) =(1/(logx))  −logxe^(−logx) =−  −logx=W_0 (−1)  x=e^(−W_0 (−1))    (Complex solution x∈C)  Error!  e^x =logx  And e^x =x   (dosen′t satisfy any condition)
$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$$$\mathrm{e}^{\mathrm{e}^{\mathrm{x}} } =\mathrm{x} \\ $$$$\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{\mathrm{d}^{\mathrm{d}^{\mathrm{d}} } } } } } =\mathrm{x} \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{x} \\ $$$$\mathrm{x}=\mathrm{logx} \\ $$$$\mathrm{e}^{−\mathrm{logx}} =\frac{\mathrm{1}}{\mathrm{logx}} \\ $$$$−\mathrm{logxe}^{−\mathrm{logx}} =− \\ $$$$−\mathrm{logx}=\mathrm{W}_{\mathrm{0}} \left(−\mathrm{1}\right) \\ $$$$\mathrm{x}=\mathrm{e}^{−\mathrm{W}_{\mathrm{0}} \left(−\mathrm{1}\right)} \:\:\:\left(\mathrm{Complex}\:\mathrm{solution}\:\mathrm{x}\in\mathbb{C}\right) \\ $$$$\mathrm{Error}! \\ $$$$\mathrm{e}^{\mathrm{x}} =\mathrm{logx} \\ $$$$\mathrm{And}\:\mathrm{e}^{\mathrm{x}} =\mathrm{x}\:\:\:\left(\mathrm{dosen}'\mathrm{t}\:\mathrm{satisfy}\:\mathrm{any}\:\mathrm{condition}\right) \\ $$$$ \\ $$
Commented by TANMAY PANACEA last updated on 27/Sep/20
from graph it is clear that e^x  and lnx never cross  each other ...so no solution
$${from}\:{graph}\:{it}\:{is}\:{clear}\:{that}\:{e}^{{x}} \:{and}\:{lnx}\:{never}\:{cross} \\ $$$${each}\:{other}\:…{so}\:{no}\:{solution} \\ $$
Commented by Dwaipayan Shikari last updated on 27/Sep/20
Complex solution   No real solution
$$\mathrm{Complex}\:\mathrm{solution}\: \\ $$$$\mathrm{No}\:\mathrm{real}\:\mathrm{solution}\: \\ $$
Commented by TANMAY PANACEA last updated on 27/Sep/20
ok
$${ok} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *