Menu Close

Each-side-of-an-equilateral-triangle-subtends-angle-of-60-at-the-top-of-a-tower-of-height-h-standing-at-the-centre-of-the-triangle-If-2a-be-the-length-of-the-side-of-the-triangle-then-a-2-h-2-




Question Number 15392 by Tinkutara last updated on 10/Jun/17
Each side of an equilateral triangle  subtends angle of 60° at the top of a  tower of height h standing at the centre  of the triangle. If 2a be the length of the  side of the triangle, then (a^2 /h^2 ) = ?
Eachsideofanequilateraltrianglesubtendsangleof60°atthetopofatowerofheighthstandingatthecentreofthetriangle.If2abethelengthofthesideofthetriangle,thena2h2=?
Answered by mrW1 last updated on 10/Jun/17
s=distance of center point of triangle  to the side of triangle  s=(1/3)×2a×((√3)/2)=(a/( (√3)))  h^2 +((a/( (√3))))^2 =(2a×((√3)/2))^2   h^2 +(a^2 /3)=3a^2   h^2 =(8/3)a^2   ⇒(a^2 /h^2 )=(3/8)
s=distanceofcenterpointoftriangletothesideoftriangles=13×2a×32=a3h2+(a3)2=(2a×32)2h2+a23=3a2h2=83a2a2h2=38
Commented by Tinkutara last updated on 10/Jun/17
How do you get line 4?
Howdoyougetline4?
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
ThanksSir!
Commented by mrW1 last updated on 10/Jun/17
AB=BC=CA=2a  ∵TA=TB=TC ∧∠ATB=∠BTC=∠CTA=60°  ⇒ΔABT,ΔBCT,ΔCAT=equilateral  AT=BT=AB=2a  TM=AT×sin 60°=2a×((√3)/2)=(√3)a  OM=(1/3)×CM=(1/3)×2a×((√3)/2)=(a/( (√3)))  OT^2 +OM^2 =TM^2   h^2 +((a/( (√3))))^2 =((√3)a)^2   h^2 +(a^2 /3)=3a^2   ⇒(a^2 /h^2 )=(3/8)
AB=BC=CA=2aTA=TB=TCATB=BTC=CTA=60°ΔABT,ΔBCT,ΔCAT=equilateralAT=BT=AB=2aTM=AT×sin60°=2a×32=3aOM=13×CM=13×2a×32=a3OT2+OM2=TM2h2+(a3)2=(3a)2h2+a23=3a2a2h2=38
Commented by mrW1 last updated on 10/Jun/17

Leave a Reply

Your email address will not be published. Required fields are marked *