Menu Close

EI-4-y-x-4-S-2-y-t-2-0-1-y-x-0-U-0-x-y-t-x-0-V-0-x-EI-2-y-x-2-0-t-EI-2-y-x-2-L-t-0-




Question Number 158625 by ArielVyny last updated on 07/Nov/21
EI(∂^4 y/∂x^4 )+ρS(∂^2 y/∂t^2 )=0   (1)  y(x,0)=U_0 (x)  (∂y/∂t)(x,0)=V_0 (x)      ; EI(∂^2 y/∂x^2 )(0,t)=EI(∂^2 y/∂x^2 )(L,t)=0
$${EI}\frac{\partial^{\mathrm{4}} {y}}{\partial{x}^{\mathrm{4}} }+\rho{S}\frac{\partial^{\mathrm{2}} {y}}{\partial{t}^{\mathrm{2}} }=\mathrm{0}\:\:\:\left(\mathrm{1}\right) \\ $$$${y}\left({x},\mathrm{0}\right)={U}_{\mathrm{0}} \left({x}\right) \\ $$$$\frac{\partial{y}}{\partial{t}}\left({x},\mathrm{0}\right)={V}_{\mathrm{0}} \left({x}\right)\:\:\:\:\:\:;\:{EI}\frac{\partial^{\mathrm{2}} {y}}{\partial{x}^{\mathrm{2}} }\left(\mathrm{0},{t}\right)={EI}\frac{\partial^{\mathrm{2}} {y}}{\partial{x}^{\mathrm{2}} }\left({L},{t}\right)=\mathrm{0} \\ $$
Commented by ArielVyny last updated on 07/Nov/21
solve
$${solve} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *