Question Number 158625 by ArielVyny last updated on 07/Nov/21
$${EI}\frac{\partial^{\mathrm{4}} {y}}{\partial{x}^{\mathrm{4}} }+\rho{S}\frac{\partial^{\mathrm{2}} {y}}{\partial{t}^{\mathrm{2}} }=\mathrm{0}\:\:\:\left(\mathrm{1}\right) \\ $$$${y}\left({x},\mathrm{0}\right)={U}_{\mathrm{0}} \left({x}\right) \\ $$$$\frac{\partial{y}}{\partial{t}}\left({x},\mathrm{0}\right)={V}_{\mathrm{0}} \left({x}\right)\:\:\:\:\:\:;\:{EI}\frac{\partial^{\mathrm{2}} {y}}{\partial{x}^{\mathrm{2}} }\left(\mathrm{0},{t}\right)={EI}\frac{\partial^{\mathrm{2}} {y}}{\partial{x}^{\mathrm{2}} }\left({L},{t}\right)=\mathrm{0} \\ $$
Commented by ArielVyny last updated on 07/Nov/21
$${solve} \\ $$