Menu Close

Elementary-algebra-If-x-1-17-2-Find-the-value-of-E-x-8-x-7-x-6-x-1-x-6-x-3-1-




Question Number 190883 by mnjuly1970 last updated on 13/Apr/23
            Elementary   algebra              If  ,  x = ((1 +(√(17)))/2)  ⇒  Find  the value of :                  E = (( x^8 − x^( 7)  + x^( 6) −....− x +1 )/(x^( 6)  − x^( 3)  + 1)) = ?                   @nice − mathematics
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Elementary}\:\:\:\mathrm{algebra} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{If}\:\:,\:\:{x}\:=\:\frac{\mathrm{1}\:+\sqrt{\mathrm{17}}}{\mathrm{2}}\:\:\Rightarrow\:\:\mathrm{Find}\:\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{E}\:=\:\frac{\:{x}^{\mathrm{8}} −\:{x}^{\:\mathrm{7}} \:+\:{x}^{\:\mathrm{6}} −….−\:{x}\:+\mathrm{1}\:}{{x}^{\:\mathrm{6}} \:−\:{x}^{\:\mathrm{3}} \:+\:\mathrm{1}}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:@\mathrm{nice}\:−\:\mathrm{mathematics}\:\:\: \\ $$$$ \\ $$
Answered by Frix last updated on 13/Apr/23
E=(((x^2 −x+1)(x^6 −x^3 +1))/(x^6 −x^3 +1))=x^2 −x+1=5
$${E}=\frac{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\left({x}^{\mathrm{6}} −{x}^{\mathrm{3}} +\mathrm{1}\right)}{{x}^{\mathrm{6}} −{x}^{\mathrm{3}} +\mathrm{1}}={x}^{\mathrm{2}} −{x}+\mathrm{1}=\mathrm{5} \\ $$
Answered by mnjuly1970 last updated on 13/Apr/23
     E = (((1+ x^( 9) )/(1+x))/(1−x^( 3) + x^( 6) ))= ((1+x^( 9) )/((1+x)(1−x^( 3) + x^( 6) )))           = (( 1+x^( 3) )/(1+x))= 1−x + x^( 2)           = 1−x (1−x)          = 1−(((1+(√(17)))/2))( ((1−(√(17)))/2))         = 1−((−16)/4)= 5 ✓
$$\:\:\:\:\:\mathrm{E}\:=\:\frac{\frac{\mathrm{1}+\:{x}^{\:\mathrm{9}} }{\mathrm{1}+{x}}}{\mathrm{1}−{x}^{\:\mathrm{3}} +\:{x}^{\:\mathrm{6}} }=\:\frac{\mathrm{1}+{x}^{\:\mathrm{9}} }{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}^{\:\mathrm{3}} +\:{x}^{\:\mathrm{6}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\:\mathrm{1}+{x}^{\:\mathrm{3}} }{\mathrm{1}+{x}}=\:\mathrm{1}−{x}\:+\:{x}^{\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{1}−{x}\:\left(\mathrm{1}−{x}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{1}−\left(\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)\left(\:\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{1}−\frac{−\mathrm{16}}{\mathrm{4}}=\:\mathrm{5}\:\checkmark \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *