Menu Close

elementary-calculus-are-roots-of-equation-of-x-2-6x-2-0-define-t-n-n-n-n-1-then-evaluate-A-t-10-2t-8-2t-9-




Question Number 120855 by mnjuly1970 last updated on 03/Nov/20
           ... elementary  calculus...    :: α,β are roots of  equation       of : x^2 −6x−2=0           define :: t_n =α^n −β^n  (n≥1)            then  evaluate :               A=((t_(10) −2t_8 )/(2t_9 )) =???                ...m.n.1970...
elementarycalculus::α,βarerootsofequationof:x26x2=0define::tn=αnβn(n1)thenevaluate:A=t102t82t9=???m.n.1970
Answered by TANMAY PANACEA last updated on 03/Nov/20
x^2 −6x−2=0  x=((6±(√(36+8)))/2)=3±(√(11))   t_n =(3+(√(11)) )^n −(3−(√(11)) )^n
x26x2=0x=6±36+82=3±11tn=(3+11)n(311)n
Answered by mnjuly1970 last updated on 07/Nov/20
solution::    α+β=−(b/a)=6     αβ=(c/a)=−2     t_n =α^n −β^n       A=((α^(10) −β^(10) +αβ(α^8 −β^( 8) ))/(2(α^9 −β^( 9) )))        =((α^9 (α+β)−β^( 9) (α+β))/(2(α^9 −β^( 9) )))            =((α+β)/2) =6✓ ✓              ...m.n.july.1970...
solution::α+β=ba=6αβ=ca=2tn=αnβnA=α10β10+αβ(α8β8)2(α9β9)=α9(α+β)β9(α+β)2(α9β9)=α+β2=6m.n.july.1970

Leave a Reply

Your email address will not be published. Required fields are marked *