Menu Close

elementary-calculus-are-roots-of-equation-of-x-2-6x-2-0-define-t-n-n-n-n-1-then-evaluate-A-t-10-2t-8-2t-9-




Question Number 120855 by mnjuly1970 last updated on 03/Nov/20
           ... elementary  calculus...    :: α,β are roots of  equation       of : x^2 −6x−2=0           define :: t_n =α^n −β^n  (n≥1)            then  evaluate :               A=((t_(10) −2t_8 )/(2t_9 )) =???                ...m.n.1970...
$$\:\:\:\:\:\:\:\:\:\:\:…\:{elementary}\:\:{calculus}… \\ $$$$\:\:::\:\alpha,\beta\:{are}\:{roots}\:{of}\:\:{equation} \\ $$$$\:\:\:\:\:{of}\::\:{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:{define}\:::\:{t}_{{n}} =\alpha^{{n}} −\beta^{{n}} \:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{then}\:\:{evaluate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{A}=\frac{{t}_{\mathrm{10}} −\mathrm{2}{t}_{\mathrm{8}} }{\mathrm{2}{t}_{\mathrm{9}} }\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}.\mathrm{1970}… \\ $$
Answered by TANMAY PANACEA last updated on 03/Nov/20
x^2 −6x−2=0  x=((6±(√(36+8)))/2)=3±(√(11))   t_n =(3+(√(11)) )^n −(3−(√(11)) )^n
$${x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{2}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{6}\pm\sqrt{\mathrm{36}+\mathrm{8}}}{\mathrm{2}}=\mathrm{3}\pm\sqrt{\mathrm{11}}\: \\ $$$${t}_{{n}} =\left(\mathrm{3}+\sqrt{\mathrm{11}}\:\right)^{{n}} −\left(\mathrm{3}−\sqrt{\mathrm{11}}\:\right)^{{n}} \\ $$
Answered by mnjuly1970 last updated on 07/Nov/20
solution::    α+β=−(b/a)=6     αβ=(c/a)=−2     t_n =α^n −β^n       A=((α^(10) −β^(10) +αβ(α^8 −β^( 8) ))/(2(α^9 −β^( 9) )))        =((α^9 (α+β)−β^( 9) (α+β))/(2(α^9 −β^( 9) )))            =((α+β)/2) =6✓ ✓              ...m.n.july.1970...
$${solution}:: \\ $$$$\:\:\alpha+\beta=−\frac{{b}}{{a}}=\mathrm{6} \\ $$$$\:\:\:\alpha\beta=\frac{{c}}{{a}}=−\mathrm{2} \\ $$$$\:\:\:{t}_{{n}} =\alpha^{{n}} −\beta\:^{{n}} \\ $$$$\:\:\:\:\mathrm{A}=\frac{\alpha^{\mathrm{10}} −\beta^{\mathrm{10}} +\alpha\beta\left(\alpha^{\mathrm{8}} −\beta^{\:\mathrm{8}} \right)}{\mathrm{2}\left(\alpha^{\mathrm{9}} −\beta^{\:\mathrm{9}} \right)} \\ $$$$\:\:\:\:\:\:=\frac{\alpha^{\mathrm{9}} \left(\alpha+\beta\right)−\beta^{\:\mathrm{9}} \left(\alpha+\beta\right)}{\mathrm{2}\left(\alpha^{\mathrm{9}} −\beta^{\:\mathrm{9}} \right)}\:\:\: \\ $$$$\:\:\:\:\:\:\:=\frac{\alpha+\beta}{\mathrm{2}}\:=\mathrm{6}\checkmark\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}.{july}.\mathrm{1970}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *