Menu Close

emath-use-cayley-hamilton-theorem-to-calculate-A-1-for-A-1-2-2-1-2-1-1-1-4-




Question Number 109240 by bemath last updated on 22/Aug/20
  ((♭emath)/(•••••))  use cayley − hamilton theorem  to calculate A^(−1)  for A= (((1     2     2)),((1      2  −1)),((−1  1    4)) )
$$\:\:\frac{\flat{emath}}{\bullet\bullet\bullet\bullet\bullet} \\ $$$${use}\:{cayley}\:−\:{hamilton}\:{theorem} \\ $$$${to}\:{calculate}\:{A}^{−\mathrm{1}} \:{for}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\mathrm{2}\:\:−\mathrm{1}}\\{−\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{4}}\end{pmatrix} \\ $$
Answered by bobhans last updated on 22/Aug/20
    ((♭o♭hans)/(≤≥≡•°#))  the characteristic equation   λ^3 −(tr A)λ^2 + (((       minor )),((from diagonal)) ) λ−det(A)=0  λ^3 −9λ^2 + ( determinant (((2    −1)),((1       4)))+ determinant (((   1      2)),((−1    4)))+ determinant (((1   2)),((1   2))))λ−det(A)=0  λ^3 −9λ^2 +15λ−9=0  By Cayley − Hamilton theorem  A^3 −9A^2 +15A−9I=0  multiply both sides by A^(−1)   ⇒A^2 −9A+15I−9A^(−1) =0  9A^(−1) =A^2 −9A+15I  9A^(−1)  =  (((1       8      8)),((4       5  −4)),((−4   4    13)) ) − (((9     18    18)),((9      18    −9)),((−9   9     36)) ) + (((15    0      0)),((0       15    0)),((0        0    15)) )  9A^(−1) = ((( 7    −10     −10)),((−5       2            5)),((  5        −5        −8)) )  ∴ A^(−1) = (1/9) (((   7       −10       −10)),((−5          2                5)),((   5         −5           −8)) )
$$\:\:\:\:\frac{\flat{o}\flat{hans}}{\leqslant\geqslant\equiv\bullet°#} \\ $$$${the}\:{characteristic}\:{equation}\: \\ $$$$\lambda^{\mathrm{3}} −\left({tr}\:{A}\right)\lambda^{\mathrm{2}} +\begin{pmatrix}{\:\:\:\:\:\:\:{minor}\:}\\{{from}\:{diagonal}}\end{pmatrix}\:\lambda−{det}\left({A}\right)=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{9}\lambda^{\mathrm{2}} +\:\left(\begin{vmatrix}{\mathrm{2}\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\mathrm{4}}\end{vmatrix}+\begin{vmatrix}{\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\mathrm{4}}\end{vmatrix}+\begin{vmatrix}{\mathrm{1}\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\mathrm{2}}\end{vmatrix}\right)\lambda−{det}\left({A}\right)=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{9}\lambda^{\mathrm{2}} +\mathrm{15}\lambda−\mathrm{9}=\mathrm{0} \\ $$$${By}\:{Cayley}\:−\:{Hamilton}\:{theorem} \\ $$$${A}^{\mathrm{3}} −\mathrm{9}{A}^{\mathrm{2}} +\mathrm{15}{A}−\mathrm{9}{I}=\mathrm{0} \\ $$$${multiply}\:{both}\:{sides}\:{by}\:{A}^{−\mathrm{1}} \\ $$$$\Rightarrow{A}^{\mathrm{2}} −\mathrm{9}{A}+\mathrm{15}{I}−\mathrm{9}{A}^{−\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} ={A}^{\mathrm{2}} −\mathrm{9}{A}+\mathrm{15}{I} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\mathrm{8}}\\{\mathrm{4}\:\:\:\:\:\:\:\mathrm{5}\:\:−\mathrm{4}}\\{−\mathrm{4}\:\:\:\mathrm{4}\:\:\:\:\mathrm{13}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{9}\:\:\:\:\:\mathrm{18}\:\:\:\:\mathrm{18}}\\{\mathrm{9}\:\:\:\:\:\:\mathrm{18}\:\:\:\:−\mathrm{9}}\\{−\mathrm{9}\:\:\:\mathrm{9}\:\:\:\:\:\mathrm{36}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{15}\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{15}\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\mathrm{15}}\end{pmatrix} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} =\begin{pmatrix}{\:\mathrm{7}\:\:\:\:−\mathrm{10}\:\:\:\:\:−\mathrm{10}}\\{−\mathrm{5}\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\:\:\mathrm{5}\:\:\:\:\:\:\:\:−\mathrm{5}\:\:\:\:\:\:\:\:−\mathrm{8}}\end{pmatrix} \\ $$$$\therefore\:{A}^{−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{9}}\begin{pmatrix}{\:\:\:\mathrm{7}\:\:\:\:\:\:\:−\mathrm{10}\:\:\:\:\:\:\:−\mathrm{10}}\\{−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\:\:\:\mathrm{5}\:\:\:\:\:\:\:\:\:−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{8}}\end{pmatrix} \\ $$
Commented by john santu last updated on 22/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *