Menu Close

emath-use-cayley-hamilton-theorem-to-calculate-A-1-for-A-1-2-2-1-2-1-1-1-4-




Question Number 109240 by bemath last updated on 22/Aug/20
  ((♭emath)/(•••••))  use cayley − hamilton theorem  to calculate A^(−1)  for A= (((1     2     2)),((1      2  −1)),((−1  1    4)) )
emathusecayleyhamiltontheoremtocalculateA1forA=(122121114)
Answered by bobhans last updated on 22/Aug/20
    ((♭o♭hans)/(≤≥≡•°#))  the characteristic equation   λ^3 −(tr A)λ^2 + (((       minor )),((from diagonal)) ) λ−det(A)=0  λ^3 −9λ^2 + ( determinant (((2    −1)),((1       4)))+ determinant (((   1      2)),((−1    4)))+ determinant (((1   2)),((1   2))))λ−det(A)=0  λ^3 −9λ^2 +15λ−9=0  By Cayley − Hamilton theorem  A^3 −9A^2 +15A−9I=0  multiply both sides by A^(−1)   ⇒A^2 −9A+15I−9A^(−1) =0  9A^(−1) =A^2 −9A+15I  9A^(−1)  =  (((1       8      8)),((4       5  −4)),((−4   4    13)) ) − (((9     18    18)),((9      18    −9)),((−9   9     36)) ) + (((15    0      0)),((0       15    0)),((0        0    15)) )  9A^(−1) = ((( 7    −10     −10)),((−5       2            5)),((  5        −5        −8)) )  ∴ A^(−1) = (1/9) (((   7       −10       −10)),((−5          2                5)),((   5         −5           −8)) )
You can't use 'macro parameter character #' in math modethecharacteristicequationλ3(trA)λ2+(minorfromdiagonal)λdet(A)=0λ39λ2+(|2114|+|1214|+|1212|)λdet(A)=0λ39λ2+15λ9=0ByCayleyHamiltontheoremA39A2+15A9I=0multiplybothsidesbyA1A29A+15I9A1=09A1=A29A+15I9A1=(1884544413)(9181891899936)+(150001500015)9A1=(71010525558)A1=19(71010525558)
Commented by john santu last updated on 22/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *