emath-use-cayley-hamilton-theorem-to-calculate-A-1-for-A-1-2-2-1-2-1-1-1-4- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 109240 by bemath last updated on 22/Aug/20 ♭emath∙∙∙∙∙usecayley−hamiltontheoremtocalculateA−1forA=(12212−1−114) Answered by bobhans last updated on 22/Aug/20 You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math modethecharacteristicequationλ3−(trA)λ2+(minorfromdiagonal)λ−det(A)=0λ3−9λ2+(|2−114|+|12−14|+|1212|)λ−det(A)=0λ3−9λ2+15λ−9=0ByCayley−HamiltontheoremA3−9A2+15A−9I=0multiplybothsidesbyA−1⇒A2−9A+15I−9A−1=09A−1=A2−9A+15I9A−1=(18845−4−4413)−(91818918−9−9936)+(150001500015)9A−1=(7−10−10−5255−5−8)∴A−1=19(7−10−10−5255−5−8) Commented by john santu last updated on 22/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-to-each-quadratic-factor-in-the-denominator-of-the-form-ax-2-bx-c-which-does-not-have-linear-factors-there-corresponds-to-a-partial-fraction-of-the-form-Ax-B-ax-2-bx-Next Next post: Question-174776 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.