Menu Close

en-posant-x-t-1-t-oo-0-1-t-2-1-t-4-dt-




Question Number 164609 by SANOGO last updated on 19/Jan/22
en posant x=t−(1/t)  ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt
$${en}\:{posant}\:{x}={t}−\frac{\mathrm{1}}{{t}} \\ $$$$\underset{\mathrm{0}} {\int}^{+{oo}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$
Answered by Mathspace last updated on 19/Jan/22
I=∫_0 ^∞  ((1+(1/t^2 ))/(t^2 +(1/t^2 ))) dt =∫_0 ^∞  ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  =_(t−(1/t)=x)  ∫_(−∞) ^(+∞ ) (dx/(x^2 +2))  =_(x=(√2)y)   ∫_(−∞) ^(+∞ ) (((√2)dy)/(2(1+y^2 )))  =((√2)/2)[arctan(y)]_(−∞) ^(+∞)   =((√2)/2)((π/2)+(π/2))=((π(√2))/2)
$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}\:{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$$=_{{t}−\frac{\mathrm{1}}{{t}}={x}} \:\int_{−\infty} ^{+\infty\:} \frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}} \\ $$$$=_{{x}=\sqrt{\mathrm{2}}{y}} \:\:\int_{−\infty} ^{+\infty\:} \frac{\sqrt{\mathrm{2}}{dy}}{\mathrm{2}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left[{arctan}\left({y}\right)\right]_{−\infty} ^{+\infty} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right)=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by SANOGO last updated on 19/Jan/22
merci bien
$${merci}\:{bien}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *