Menu Close

en-posant-x-t-1-t-oo-0-1-t-2-1-t-4-dt-




Question Number 164609 by SANOGO last updated on 19/Jan/22
en posant x=t−(1/t)  ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt
enposantx=t1t0+oo1+t21+t4dt
Answered by Mathspace last updated on 19/Jan/22
I=∫_0 ^∞  ((1+(1/t^2 ))/(t^2 +(1/t^2 ))) dt =∫_0 ^∞  ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  =_(t−(1/t)=x)  ∫_(−∞) ^(+∞ ) (dx/(x^2 +2))  =_(x=(√2)y)   ∫_(−∞) ^(+∞ ) (((√2)dy)/(2(1+y^2 )))  =((√2)/2)[arctan(y)]_(−∞) ^(+∞)   =((√2)/2)((π/2)+(π/2))=((π(√2))/2)
I=01+1t2t2+1t2dt=01+1t2(t1t)2+2dt=t1t=x+dxx2+2=x=2y+2dy2(1+y2)=22[arctan(y)]+=22(π2+π2)=π22
Commented by SANOGO last updated on 19/Jan/22
merci bien
mercibien

Leave a Reply

Your email address will not be published. Required fields are marked *