Estimate-0-0-5-1-x-4-dx-with-an-error-0-0001- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 144186 by cherokeesay last updated on 22/Jun/21 Estimate∫00.51+x4dxwithanerror0.0001 Answered by Dwaipayan Shikari last updated on 23/Jun/21 ∫1+x4dx=∫Σ(−12)nn!(−1)nx4ndx=x4∑∞n=0(−12)nn!(−1)nx4nn+14=xΣ(−12)nn!x4n(14)n(54)n(−x4)n=x2F1(−12,14∣54;−x4)+C∫0121+x4dx=122F1(−12,14∣54;−116) Commented by cherokeesay last updated on 23/Jun/21 thankyousir. Answered by mathmax by abdo last updated on 23/Jun/21 wehave(1+x)α=1+αx+α(α−1)2x2+….⇒(1+x)12=1+x2−18x2+…⇒1+x2−x28⩽1+x⩽1+x2wechangexbyx4⇒1+x42−x88⩽1+x4⩽1+x42⇒∫012(1+x42−x88)dx⩽∫0121+x4dx⩽∫012(1+x42)dxwehave∫012(1+x42−x88)dx=[x+110x5−172x9]012=12+110.25−172.29∫012(1+x42)x=[x+110x5]012=12+110.25⇒12+110.25−172.29⩽∫0121+x4dx⩽12+110.25thebestvalueofthisintegralisv0=14+110.26−172.210+14+110.26=12+15.26−172.210 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-0-sh-t-sh-t-dt-2-tan-2-Next Next post: 0-u-2-u-8-2u-4-1-du- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.