Menu Close

Estimate-0-0-5-1-x-4-dx-with-an-error-0-0001-




Question Number 144186 by cherokeesay last updated on 22/Jun/21
Estimate ∫_0 ^(0.5) (√(1+x^4 )) dx  with an error 0.0001
Estimate00.51+x4dxwithanerror0.0001
Answered by Dwaipayan Shikari last updated on 23/Jun/21
∫(√(1+x^4 )) dx  =∫Σ(((−(1/2))_n )/(n!))(−1)^n x^(4n) dx  =(x/4)Σ_(n=0) ^∞ (((−(1/2))_n )/(n!))(−1)^n (x^(4n) /(n+(1/4)))=xΣ(((−(1/2))_n )/(n!))((x^(4n) ((1/4))_n )/(((5/4))_n ))(−x^4 )^n   =x  _2 F_1 (−(1/2),(1/4)∣(5/4);−x^4 )+C  ∫_0 ^(1/2) (√(1+x^4 )) dx=(1/2) _2 F_1 (−(1/2),(1/4)∣(5/4);−(1/(16)))
1+x4dx=Σ(12)nn!(1)nx4ndx=x4n=0(12)nn!(1)nx4nn+14=xΣ(12)nn!x4n(14)n(54)n(x4)n=x2F1(12,1454;x4)+C0121+x4dx=122F1(12,1454;116)
Commented by cherokeesay last updated on 23/Jun/21
thank you sir.
thankyousir.
Answered by mathmax by abdo last updated on 23/Jun/21
we have (1+x)^α  =1+αx +((α(α−1))/2)x^2  +.... ⇒  (1+x)^(1/2) =1+(x/2) −(1/8)x^2 +... ⇒1+(x/2)−(x^2 /8)≤(√(1+x))≤1+(x/2)  we change x by x^4  ⇒1+(x^4 /2)−(x^8 /8)≤(√(1+x^4 ))≤1+(x^4 /2) ⇒  ∫_0 ^(1/2) (1+(x^4 /2)−(x^8 /8))dx≤∫_0 ^(1/2) (√(1+x^4 ))dx≤∫_0 ^(1/2) (1+(x^4 /2))dx we have  ∫_0 ^(1/2) (1+(x^4 /2)−(x^8 /8))dx=[x+(1/(10))x^5 −(1/(72))x^9 ]_0 ^(1/2)  =(1/2)+(1/(10.2^5 ))−(1/(72.2^9 ))  ∫_0 ^(1/2)  (1+(x^4 /2))x=[x+(1/(10))x^5 ]_0 ^(1/2)  =(1/2)+(1/(10.2^5 )) ⇒  (1/2)+(1/(10.2^5 ))−(1/(72.2^9 ))≤∫_0 ^(1/2) (√(1+x^4 ))dx≤(1/2)+(1/(10.2^5 ))  the best value of this integral is  v_0 =(1/4)+(1/(10.2^6 ))−(1/(72.2^(10) ))+(1/4)+(1/(10.2^6 ))  =(1/2)+(1/(5.2^6 ))−(1/(72.2^(10) ))
wehave(1+x)α=1+αx+α(α1)2x2+.(1+x)12=1+x218x2+1+x2x281+x1+x2wechangexbyx41+x42x881+x41+x42012(1+x42x88)dx0121+x4dx012(1+x42)dxwehave012(1+x42x88)dx=[x+110x5172x9]012=12+110.25172.29012(1+x42)x=[x+110x5]012=12+110.2512+110.25172.290121+x4dx12+110.25thebestvalueofthisintegralisv0=14+110.26172.210+14+110.26=12+15.26172.210

Leave a Reply

Your email address will not be published. Required fields are marked *