Menu Close

Evaluate-0-0-e-x-2-y-2-dydx-




Question Number 20612 by ajfour last updated on 29/Aug/17
Evaluate ∫_0 ^(  ∞) ∫_0 ^(  ∞) e^(−(x^2 +y^2 )) dydx .
Evaluate00e(x2+y2)dydx.
Answered by ajfour last updated on 29/Aug/17
let  x^2 +y^2 =r^2   that is  x=rcos θ  ;  y=rsin θ  dx=−rsin θdθ   ;  dy=rcos θdθ  ∫_0 ^(  ∞) ∫_0 ^(  ∞) e^(−(x^2 +y^2 )) dydx =I  I=∫_0 ^(  ∞) [∫_( 0) ^(  π/2) e^(−r^2 ) rdθ]dr    =(π/2)∫_0 ^(  ∞) e^(−r^2 ) rdr  =(π/4)∫_∞ ^(  0) e^(−r^2 ) (−2rdr)  I= (π/4)(e^(−r^2 ) )∣_∞ ^0  = (π/4) .
letx2+y2=r2thatisx=rcosθ;y=rsinθdx=rsinθdθ;dy=rcosθdθ00e(x2+y2)dydx=II=0[0π/2er2rdθ]dr=π20er2rdr=π40er2(2rdr)I=π4(er2)0=π4.

Leave a Reply

Your email address will not be published. Required fields are marked *