Menu Close

Evaluate-0-1-0-1-1-2-x-2-y-2-dxdy-




Question Number 108954 by mnjuly1970 last updated on 20/Aug/20
              Evaluate :                 Ω=∫_0 ^( 1) ∫_0 ^( 1) (1/(2−x^2  − y^2 )) dxdy=???                                ★★♣♣★★
Evaluate:Ω=010112x2y2dxdy=???
Commented by kaivan.ahmadi last updated on 20/Aug/20
x=rcosθ,   y=rsinθ⇒−x^2 −y^2 =−r^2   0≤y≤ , 0≤x≤1  ⇒ 0≤θ≤(π/2) , 0≤r≤1  Ω=∫_0 ^(π/2) ∫_0 ^1 (1/(2−r^2 )) rdrdθ  first find ∫_0 ^1 (r/(2−r^2 ))dr  u=2−r^2 ⇒du=−2rdr  ⇒((−1)/2)∫(du/u)=((−1)/2)lnu=((−1)/2)ln(2−r^2 )∣_0 ^1 =((−1)/2)(ln1−ln2)=  ((ln2)/2)  ⇒Ω=∫_0 ^(π/2) ((ln2)/2)dθ=((ln2)/2)×(π/2)=(π/4)ln2
x=rcosθ,y=rsinθx2y2=r20y,0x10θπ2,0r1Ω=0π20112r2rdrdθfirstfind01r2r2dru=2r2du=2rdr12duu=12lnu=12ln(2r2)01=12(ln1ln2)=ln22Ω=0π2ln22dθ=ln22×π2=π4ln2
Commented by mnjuly1970 last updated on 20/Aug/20
     0≤ r≤sec(θ) & 0≤θ≤(π/4) because   integrand is symmetric    f(x,y)=f(y,x)  final answer is G:catalan constant...
0rsec(θ)&0θπ4becauseintegrandissymmetricf(x,y)=f(y,x)finalanswerisG:catalanconstant
Commented by kaivan.ahmadi last updated on 20/Aug/20
Hi sir,why do we use a dificult way when we have a  have a simple way?
Hisir,whydoweuseadificultwaywhenwehaveahaveasimpleway?
Commented by mathmax by abdo last updated on 20/Aug/20
0≤x≤1 and 0≤y≤1 ⇒0≤x^2  +y^2 ≤2 ⇒0≤r≤(√2)′..!
0x1and0y10x2+y220r2..!
Commented by kaivan.ahmadi last updated on 21/Aug/20
study polar coordinate system please.
studypolarcoordinatesystemplease.
Answered by mathmax by abdo last updated on 20/Aug/20
Ω =∫_0 ^1  ∫_0 ^1  ((dxdy)/(2−x^2 −y^2 ))  we considere the diffeomorphism   { ((x =rcosθ           _(⇒  ) Ω =∫∫ _(o≤r≤(√2)and  0≤θ≤(π/2))     (1/(2−r^2 ))r dr dθ)),((y =rsinθ)) :}  =(π/2)∫_0 ^(√2)   ((rdr)/((2−r^2 ))) =−(π/4) ∫_0 ^(√2)    ((−2r)/(2−r^2 ))dr =−(π/4)[ln∣2−r^2 ∣]_0 ^(√2)  =∞  this integral is divergent...
Ω=0101dxdy2x2y2weconsiderethediffeomorphism{x=rcosθΩ=or2and0θπ212r2rdrdθy=rsinθ=π202rdr(2r2)=π4022r2r2dr=π4[ln2r2]02=thisintegralisdivergent

Leave a Reply

Your email address will not be published. Required fields are marked *