Question Number 16703 by Tinkutara last updated on 25/Jun/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17

Commented by Tinkutara last updated on 26/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17

Answered by Tinkutara last updated on 05/Jul/17
![Let x = (1/t) ⇒ t = (1/x) and dx = ((−dt)/t^2 ) ∴ ∫(dx/((1 + x^2 )(√(1 − x^2 )))) = ∫(((−dt)/t^2 )/((1 + (1/t^2 ))(√(1 − (1/t^2 ))))) = −∫((tdt)/((t^2 + 1)(√(t^2 − 1)))) Now let t^2 − 1 = z^2 . So tdt = zdz. Integral becomes −∫((zdz)/((z^2 + 2)z)) = −∫(dz/(z^2 + 2)) = ((−1)/( (√2))) tan^(−1) (z/( (√2))) Now z = (√(t^2 − 1)) = (√((1/x^2 ) − 1)) As x→0, z→∞ and x→(1/2), z→(√3). ∴ ∫_0 ^(1/2) (dx/((1 + x^2 )(√(1 − x^2 )))) = ((−1)/( (√2))) [tan^(−1) (z/( (√2)))]_∞ ^(√3) = (1/( (√2))) [(π/2) − tan^(−1) (√(3/2))] = (1/( (√2))) tan^(−1) (√(2/3))](https://www.tinkutara.com/question/Q17442.png)