Menu Close

Evaluate-0-1-2-dx-1-x-2-1-x-2-




Question Number 16703 by Tinkutara last updated on 25/Jun/17
Evaluate: ∫_0 ^(1/2) (dx/((1 + x^2 )(√(1 − x^2 ))))
Evaluate:012dx(1+x2)1x2
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17
x=tgϕ⇒dx=(1+tg^2 ϕ)dϕ  1+x^2 =(1/(cos^2 ϕ))⇒cos^2 ϕ=(1/(1+x^2 ))⇒  sin^2 ϕ=1−(1/(1+x^2 ))=(x^2 /(1+x^2 ))⇒sinϕ=(x/( (√(1+x^2 ))))  ⇒I=∫(((1+tg^2 ϕ)dϕ)/((1+tg^2 ϕ)(√(1−tg^2 ϕ))))=∫(dϕ/( (√(1−tg^2 ϕ))))=  =∫((cosϕdϕ)/( (√(1−2sin^2 ϕ))))=∫(du/( (√(1−2u^2 ))))=(1/( (√2)))∫(du/( (√((1/2)−u^2 ))))=    =(1/( (√2)))×sin^(−1) (√2)u+C=(1/( (√2)))sin^(−1) ((√2)sinϕ)+C=  =(1/( (√2)))sin^(−1) (((x(√2))/( (√(1+x^2 )))))+C  ⇒I=F((1/2))−F(0)=(1/( (√2)))sin^(−1) (((2×(1/2)(√2))/( (√5))))−0=  =(1/( (√2)))sin^(−1) ((√(2/5)))=0.483924  .■
x=tgφdx=(1+tg2φ)dφ1+x2=1cos2φcos2φ=11+x2sin2φ=111+x2=x21+x2sinφ=x1+x2I=(1+tg2φ)dφ(1+tg2φ)1tg2φ=dφ1tg2φ==cosφdφ12sin2φ=du12u2=12du12u2==12×sin12u+C=12sin1(2sinφ)+C==12sin1(x21+x2)+CI=F(12)F(0)=12sin1(2×1225)0==12sin1(25)=0.483924.◼
Commented by Tinkutara last updated on 26/Jun/17
Thanks Sir!
ThanksSir!
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17
you are right.it is correct now.
youareright.itiscorrectnow.
Answered by Tinkutara last updated on 05/Jul/17
Let x = (1/t) ⇒ t = (1/x) and dx = ((−dt)/t^2 )  ∴ ∫(dx/((1 + x^2 )(√(1 − x^2 )))) = ∫(((−dt)/t^2 )/((1 + (1/t^2 ))(√(1 − (1/t^2 )))))  = −∫((tdt)/((t^2  + 1)(√(t^2  − 1))))  Now let t^2  − 1 = z^2 . So tdt = zdz.  Integral becomes −∫((zdz)/((z^2  + 2)z))  = −∫(dz/(z^2  + 2)) = ((−1)/( (√2))) tan^(−1)  (z/( (√2)))  Now z = (√(t^2  − 1)) = (√((1/x^2 ) − 1))  As x→0, z→∞ and x→(1/2), z→(√3).  ∴ ∫_0 ^(1/2) (dx/((1 + x^2 )(√(1 − x^2 )))) = ((−1)/( (√2))) [tan^(−1)  (z/( (√2)))]_∞ ^(√3)   = (1/( (√2))) [(π/2) − tan^(−1)  (√(3/2))]  = (1/( (√2))) tan^(−1)  (√(2/3))
Letx=1tt=1xanddx=dtt2dx(1+x2)1x2=dtt2(1+1t2)11t2=tdt(t2+1)t21Nowlett21=z2.Sotdt=zdz.Integralbecomeszdz(z2+2)z=dzz2+2=12tan1z2Nowz=t21=1x21Asx0,zandx12,z3.012dx(1+x2)1x2=12[tan1z2]3=12[π2tan132]=12tan123

Leave a Reply

Your email address will not be published. Required fields are marked *