Menu Close

Evaluate-0-1-Log-x-x-2-2x-3-dx-




Question Number 48289 by Abdulhafeez Abu qatada last updated on 21/Nov/18
Evaluate ∫_0 ^1 ((Log(x))/(x^2 +2x+3)) dx
Evaluate10Log(x)x2+2x+3dx
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Nov/18
Commented by maxmathsup by imad last updated on 22/Nov/18
let A =∫_0 ^1   ((ln(x))/(x^2  +2x+3))dx ⇒A =∫_0 ^1  ((ln(x))/((x+1)^2  +2))  A =_(x+1 =(√2)t)    ∫_(1/( (√2))) ^(√2)    ((ln(t(√2)−1))/(2(1+t^2 ))) (√2)dt =(1/( (√2))) ∫_(1/( (√2))) ^(√2)   ((ln(t(√2)−1))/(1+t^2 ))dt let consider the  parametric function ϕ(x)=∫_(1/( (√2))) ^(√2)  ((ln(xt−1))/(1+t^2 ))dt        (xt>1)  ϕ^′ (x) = ∫_(1/( (√2))) ^(√2)    (t/((xt−1)(1+t^2 ))) dt let decompose F(t)=(t/((xt−1)(1+t^2 )))  F(t)=(a/(xt−1)) +((bt+c)/(t^2  +1))  a =lim_(t→(1/x))   (xt−1)F(t) =(1/(x(1+(1/x^2 )))) =(1/(x+(1/x))) =(x/(x^2  +1))  lim_(t→+∞) t F(t)=(a/x) +b ⇒b=−(1/(x^2  +1)) ⇒F(t)=(x/((x^2  +1)(xt−1))) +((−(t/(x^2  +1))+c)/(t^2  +1))  F(0) =0 =−(x/((x^2  +1))) +c ⇒c=(x/(x^2  +1)) ⇒  F(t)= (x/((x^2  +1)(xt−1))) −(1/(x^2  +1)) ((t −x)/(t^2  +1)) ⇒  ϕ^′ (x) =∫_(1/( (√2))) ^(√2) (  (x/((x^2  +1)(xt−1))) −(1/(x^2  +1)) ((t−x)/(t^2  +1)))dt  =(x/(x^2  +1)) ∫_(1/( (√2))) ^(√2)   (dt/(xt−1)) −(1/(2(x^2  +1))) ∫_(1/( (√2))) ^(√2) ((2t)/(t^2  +1)) +(x/(x^2  +1)) ∫_(1/( (√2))) ^(√2)   (dt/(t^2  +1))  =(1/(x^2  +1))ln∣xt−1∣]_(1/( (√2))) ^(√2)  −(1/(2(x^2  +1)))[ln(t^2  +1)]_(1/( (√2))) ^(√2)    +(x/(x^2  +1)) [arctan(t)]_(1/( (√2))) ^(√2)   =(1/(x^2 +1)){ln∣x(√2)−1∣−ln∣(x/( (√2)))−1∣}−((ln(2))/(2(x^2  +1)))  +(x/(x^2  +1)) {arctan((√2))−arctan((1/( (√2))))} ⇒  ϕ(x) = ∫  ((ln(x(√2)−1))/(x^2  +1)) dx−∫  ((ln((x/( (√2)))−1))/(x^2  +1))dx −((ln(2))/2) ∫  (dx/(1+x^2 ))   +(arctan((√2))−arctan((1/( (√2)))) ∫ ((xdx)/(x^2  +1))+c ⇒  ϕ(x) =∫ ((ln(x(√2)−1))/(x^2  +1))dx−∫  ((ln(x−(√2)))/(x^2  +1)) dx +ln((√2))arctanx−((ln(2))/2) arctanx  +(1/2)(arctan((√2))−arctan((1/( (√2)))))ln(1+x^2 )+c  =∫ ((ln(x(√2)−1))/(x^2  +1))dx−∫ ((ln(x−(√2)))/(x^2  +1))dx +(1/2)(arctan((√2))−arctan((1/( (√2)))))ln(1+x^2 )+c  ....be continued...
letA=01ln(x)x2+2x+3dxA=01ln(x)(x+1)2+2A=x+1=2t122ln(t21)2(1+t2)2dt=12122ln(t21)1+t2dtletconsidertheparametricfunctionφ(x)=122ln(xt1)1+t2dt(xt>1)φ(x)=122t(xt1)(1+t2)dtletdecomposeF(t)=t(xt1)(1+t2)F(t)=axt1+bt+ct2+1a=limt1x(xt1)F(t)=1x(1+1x2)=1x+1x=xx2+1limt+tF(t)=ax+bb=1x2+1F(t)=x(x2+1)(xt1)+tx2+1+ct2+1F(0)=0=x(x2+1)+cc=xx2+1F(t)=x(x2+1)(xt1)1x2+1txt2+1φ(x)=122(x(x2+1)(xt1)1x2+1txt2+1)dt=xx2+1122dtxt112(x2+1)1222tt2+1+xx2+1122dtt2+1=1x2+1lnxt1]12212(x2+1)[ln(t2+1)]122+xx2+1[arctan(t)]122=1x2+1{lnx21lnx21}ln(2)2(x2+1)+xx2+1{arctan(2)arctan(12)}φ(x)=ln(x21)x2+1dxln(x21)x2+1dxln(2)2dx1+x2+(arctan(2)arctan(12)xdxx2+1+cφ(x)=ln(x21)x2+1dxln(x2)x2+1dx+ln(2)arctanxln(2)2arctanx+12(arctan(2)arctan(12))ln(1+x2)+c=ln(x21)x2+1dxln(x2)x2+1dx+12(arctan(2)arctan(12))ln(1+x2)+c.becontinued
Commented by maxmathsup by imad last updated on 22/Nov/18
we have 0<x^2 <1  ,0<2x<2 ⇒ 3<x^2  +2x+3<5 ⇒ (1/5)<(1/(x^2  +2x+3)) <(1/3) ⇒  ⇒−(1/5)ln(x)<−((lnx)/(x^2  +2x+3)) <−(1/3)ln(x)  ( see that ln(x)<0 on ]0,1[) ⇒  (1/3)ln(x) <((ln(x))/(x^2  +2x+3))<(1/5)ln(x) ⇒(1/3) ∫_0 ^1 ln(x)dx <∫_0 ^1  ((ln(x))/(x^2  +2x+3))dx<(1/5)∫_0 ^1 ln(x) ⇒  (1/3)[xln(x)−x]_0 ^1  <∫_0 ^1   ((ln(x))/(x^2  +2x+3))< (1/5)[xln(x)−x]_0 ^1  ⇒  −(1/3)<∫_0 ^1   ((ln(x))/(x^2  +2x+3))dx<−(1/5)  we can take ∫_0 ^1  ((ln(x))/(x^2  +2x+3)) ∼−(8/(30))  with precision σ =(((1/3)−(1/5))/2) =(2/(30)) .
wehave0<x2<1,0<2x<23<x2+2x+3<515<1x2+2x+3<1315ln(x)<lnxx2+2x+3<13ln(x)(seethatln(x)<0on]0,1[)13ln(x)<ln(x)x2+2x+3<15ln(x)1301ln(x)dx<01ln(x)x2+2x+3dx<1501ln(x)13[xln(x)x]01<01ln(x)x2+2x+3<15[xln(x)x]0113<01ln(x)x2+2x+3dx<15wecantake01ln(x)x2+2x+3830withprecisionσ=13152=230.
Commented by maxmathsup by imad last updated on 22/Nov/18
so ∫_0 ^1  ((ln(x))/(x^2  +2x+3))dx ∼−0,25 .
so01ln(x)x2+2x+3dx0,25.

Leave a Reply

Your email address will not be published. Required fields are marked *