Question Number 48289 by Abdulhafeez Abu qatada last updated on 21/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Nov/18

Commented by maxmathsup by imad last updated on 22/Nov/18
![let A =∫_0 ^1 ((ln(x))/(x^2 +2x+3))dx ⇒A =∫_0 ^1 ((ln(x))/((x+1)^2 +2)) A =_(x+1 =(√2)t) ∫_(1/( (√2))) ^(√2) ((ln(t(√2)−1))/(2(1+t^2 ))) (√2)dt =(1/( (√2))) ∫_(1/( (√2))) ^(√2) ((ln(t(√2)−1))/(1+t^2 ))dt let consider the parametric function ϕ(x)=∫_(1/( (√2))) ^(√2) ((ln(xt−1))/(1+t^2 ))dt (xt>1) ϕ^′ (x) = ∫_(1/( (√2))) ^(√2) (t/((xt−1)(1+t^2 ))) dt let decompose F(t)=(t/((xt−1)(1+t^2 ))) F(t)=(a/(xt−1)) +((bt+c)/(t^2 +1)) a =lim_(t→(1/x)) (xt−1)F(t) =(1/(x(1+(1/x^2 )))) =(1/(x+(1/x))) =(x/(x^2 +1)) lim_(t→+∞) t F(t)=(a/x) +b ⇒b=−(1/(x^2 +1)) ⇒F(t)=(x/((x^2 +1)(xt−1))) +((−(t/(x^2 +1))+c)/(t^2 +1)) F(0) =0 =−(x/((x^2 +1))) +c ⇒c=(x/(x^2 +1)) ⇒ F(t)= (x/((x^2 +1)(xt−1))) −(1/(x^2 +1)) ((t −x)/(t^2 +1)) ⇒ ϕ^′ (x) =∫_(1/( (√2))) ^(√2) ( (x/((x^2 +1)(xt−1))) −(1/(x^2 +1)) ((t−x)/(t^2 +1)))dt =(x/(x^2 +1)) ∫_(1/( (√2))) ^(√2) (dt/(xt−1)) −(1/(2(x^2 +1))) ∫_(1/( (√2))) ^(√2) ((2t)/(t^2 +1)) +(x/(x^2 +1)) ∫_(1/( (√2))) ^(√2) (dt/(t^2 +1)) =(1/(x^2 +1))ln∣xt−1∣]_(1/( (√2))) ^(√2) −(1/(2(x^2 +1)))[ln(t^2 +1)]_(1/( (√2))) ^(√2) +(x/(x^2 +1)) [arctan(t)]_(1/( (√2))) ^(√2) =(1/(x^2 +1)){ln∣x(√2)−1∣−ln∣(x/( (√2)))−1∣}−((ln(2))/(2(x^2 +1))) +(x/(x^2 +1)) {arctan((√2))−arctan((1/( (√2))))} ⇒ ϕ(x) = ∫ ((ln(x(√2)−1))/(x^2 +1)) dx−∫ ((ln((x/( (√2)))−1))/(x^2 +1))dx −((ln(2))/2) ∫ (dx/(1+x^2 )) +(arctan((√2))−arctan((1/( (√2)))) ∫ ((xdx)/(x^2 +1))+c ⇒ ϕ(x) =∫ ((ln(x(√2)−1))/(x^2 +1))dx−∫ ((ln(x−(√2)))/(x^2 +1)) dx +ln((√2))arctanx−((ln(2))/2) arctanx +(1/2)(arctan((√2))−arctan((1/( (√2)))))ln(1+x^2 )+c =∫ ((ln(x(√2)−1))/(x^2 +1))dx−∫ ((ln(x−(√2)))/(x^2 +1))dx +(1/2)(arctan((√2))−arctan((1/( (√2)))))ln(1+x^2 )+c ....be continued...](https://www.tinkutara.com/question/Q48362.png)
Commented by maxmathsup by imad last updated on 22/Nov/18
![we have 0<x^2 <1 ,0<2x<2 ⇒ 3<x^2 +2x+3<5 ⇒ (1/5)<(1/(x^2 +2x+3)) <(1/3) ⇒ ⇒−(1/5)ln(x)<−((lnx)/(x^2 +2x+3)) <−(1/3)ln(x) ( see that ln(x)<0 on ]0,1[) ⇒ (1/3)ln(x) <((ln(x))/(x^2 +2x+3))<(1/5)ln(x) ⇒(1/3) ∫_0 ^1 ln(x)dx <∫_0 ^1 ((ln(x))/(x^2 +2x+3))dx<(1/5)∫_0 ^1 ln(x) ⇒ (1/3)[xln(x)−x]_0 ^1 <∫_0 ^1 ((ln(x))/(x^2 +2x+3))< (1/5)[xln(x)−x]_0 ^1 ⇒ −(1/3)<∫_0 ^1 ((ln(x))/(x^2 +2x+3))dx<−(1/5) we can take ∫_0 ^1 ((ln(x))/(x^2 +2x+3)) ∼−(8/(30)) with precision σ =(((1/3)−(1/5))/2) =(2/(30)) .](https://www.tinkutara.com/question/Q48364.png)
Commented by maxmathsup by imad last updated on 22/Nov/18
