Menu Close

Evaluate-0-1-x-2-1-x-3-dx-and-given-that-I-n-0-1-x-n-1-x-3-1-2-dx-show-that-2n-1-I-n-2-2-2-n-1-for-n-3-Hence-evaluate-I-8-I-7-and-I-6-




Question Number 89273 by Ar Brandon last updated on 16/Apr/20
Evaluate ∫_0 ^1 (x^2 /( (√(1+x^3 ))))dx and given that I_(n ) =∫_0 ^1 x^n (1+x^3 )^(−(1/2)) dx  show that (2n−1)I_n =2(√2)−2(n−1) for n≥3.  Hence evaluate I_8 , I_7  and I_6
$${Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx}\:{and}\:{given}\:{that}\:{I}_{{n}\:} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$${show}\:{that}\:\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}} =\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\left({n}−\mathrm{1}\right)\:{for}\:{n}\geqslant\mathrm{3}. \\ $$$${Hence}\:{evaluate}\:{I}_{\mathrm{8}} ,\:{I}_{\mathrm{7}} \:{and}\:{I}_{\mathrm{6}} \\ $$
Answered by 675480065 last updated on 17/Apr/20
    evaluating the intergral:  ∫_0 ^1 (x^2 /( (√(1+x^3 ))))dx=J  Let u=x^3 +1         ⇒du=3x^2 dx ⇒ x^2 dx=(1/3)du.  substitute above we get...  J=(1/3)∫_0 ^1 u^(−(1/2)) du  =(1/6)(√u), but u=(√(x^3 +1)).  J=(1/6)((√(√(x^3 +1))))]_0 ^(1 ) =(1/6){(√(√2))−1}  Also:  I_n =∫_0 ^1 x^n (1+x^3 )^((−1)/2) dx.  let u=(1+x^3 )^(−(1/2))                    dv=x^n dx  ⇒(du/dx)=−((3x^2 )/2)(1+x^3 )^(−(3/2))         v=(x^(n+1) /((n+1))).
$$ \\ $$$$ \\ $$$$\mathrm{evaluating}\:\mathrm{the}\:\mathrm{intergral}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx}=\mathrm{J} \\ $$$$\mathrm{Let}\:\mathrm{u}=\mathrm{x}^{\mathrm{3}} +\mathrm{1}\:\:\:\:\: \\ $$$$\:\:\Rightarrow\mathrm{du}=\mathrm{3x}^{\mathrm{2}} \mathrm{dx}\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{du}. \\ $$$$\mathrm{substitute}\:\mathrm{above}\:\mathrm{we}\:\mathrm{get}… \\ $$$$\mathrm{J}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{du}\:\:=\frac{\mathrm{1}}{\mathrm{6}}\sqrt{\mathrm{u}},\:\mathrm{but}\:\mathrm{u}=\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}. \\ $$$$\left.\mathrm{J}=\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt{\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}\:} =\frac{\mathrm{1}}{\mathrm{6}}\left\{\sqrt{\sqrt{\mathrm{2}}}−\mathrm{1}\right\} \\ $$$$\mathrm{Also}: \\ $$$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} \mathrm{dx}. \\ $$$$\mathrm{let}\:\mathrm{u}=\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{dv}=\mathrm{x}^{\mathrm{n}} \mathrm{dx} \\ $$$$\Rightarrow\frac{\mathrm{du}}{\mathrm{dx}}=−\frac{\mathrm{3x}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\:\:\:\:\:\:\:\mathrm{v}=\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\left(\mathrm{n}+\mathrm{1}\right)}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *