Menu Close

Evaluate-0-1-x-2-1-x-3-dx-and-given-that-I-n-0-1-x-n-1-x-3-1-2-dx-show-that-2n-1-I-n-2-2-2-n-1-for-n-3-Hence-evaluate-I-8-I-7-and-I-6-




Question Number 89273 by Ar Brandon last updated on 16/Apr/20
Evaluate ∫_0 ^1 (x^2 /( (√(1+x^3 ))))dx and given that I_(n ) =∫_0 ^1 x^n (1+x^3 )^(−(1/2)) dx  show that (2n−1)I_n =2(√2)−2(n−1) for n≥3.  Hence evaluate I_8 , I_7  and I_6
Evaluate01x21+x3dxandgiventhatIn=01xn(1+x3)12dxshowthat(2n1)In=222(n1)forn3.HenceevaluateI8,I7andI6
Answered by 675480065 last updated on 17/Apr/20
    evaluating the intergral:  ∫_0 ^1 (x^2 /( (√(1+x^3 ))))dx=J  Let u=x^3 +1         ⇒du=3x^2 dx ⇒ x^2 dx=(1/3)du.  substitute above we get...  J=(1/3)∫_0 ^1 u^(−(1/2)) du  =(1/6)(√u), but u=(√(x^3 +1)).  J=(1/6)((√(√(x^3 +1))))]_0 ^(1 ) =(1/6){(√(√2))−1}  Also:  I_n =∫_0 ^1 x^n (1+x^3 )^((−1)/2) dx.  let u=(1+x^3 )^(−(1/2))                    dv=x^n dx  ⇒(du/dx)=−((3x^2 )/2)(1+x^3 )^(−(3/2))         v=(x^(n+1) /((n+1))).
evaluatingtheintergral:01x21+x3dx=JLetu=x3+1du=3x2dxx2dx=13du.substituteabovewegetJ=1301u12du=16u,butu=x3+1.J=16(x3+1)]01=16{21}Also:In=01xn(1+x3)12dx.letu=(1+x3)12dv=xndxdudx=3x22(1+x3)32v=xn+1(n+1).

Leave a Reply

Your email address will not be published. Required fields are marked *