Menu Close

Evaluate-0-2-e-x-e-1-x-e-x-1-dx-




Question Number 174548 by mnjuly1970 last updated on 03/Aug/22
  Evaluate .    𝛀 = ∫_0 ^( 2) ((  e^( x) )/(e^( 1−x) + e^( x−1) )) dx= ?
Evaluate.Ω=02exe1x+ex1dx=?
Answered by CElcedricjunior last updated on 03/Aug/22
Ω=∫_0 ^2 (e^x /(e^(1−x) +e^(x−1) ))dx=∫_0 ^2 ((e^(x−1) ×e^x dx)/(1+e^(x−1) ×e^(x−1) ))     =∫_0 ^2 (e^(2x−1) /(1+e^(2x−2) ))dx=(e/2)∫_0 ^2 ((2e^(2x−2) )/(1+e^(2x−2) ))dx  𝛀=(e/2)[ln(1+e^(2x−2) )]_0 ^2 =(e/2)[ln(1+e^2 )−ln(1+e^(−2) )]  =(e/2)lne^2   𝛀=e  ..........le ce^� le^� bre cedric  junior............
Ω=02exe1x+ex1dx=02ex1×exdx1+ex1×ex1=02e2x11+e2x2dx=e2022e2x21+e2x2dxΩ=e2[ln(1+e2x2)]02=e2[ln(1+e2)ln(1+e2)]=e2lne2Ω=e.lecel´ebre`cedricjunior

Leave a Reply

Your email address will not be published. Required fields are marked *