Question Number 13622 by Tinkutara last updated on 21/May/17

Answered by ajfour last updated on 22/May/17
![I=∫_0 ^( 2π) e^(x/2) sin ((x/2)+(π/4))dx (I/2)=∫_0 ^( 2π) e^(x/2) sin ((x/2)+(π/4))(dx/2) let t=(x/2) ⇒ dt=(dx/2) when x=0, t=0 ; and for x=2π, t=π (I/2)=∫_0 ^( π) e^t sin ((π/4)+t)dt =[e^t sin ((π/4)+t)]_0 ^π −∫_0 ^( π) e^t cos ((π/4)+t)dt =−(1/( (√2)))(e^π +1)−[e^t cos ((π/4)+t)]_0 ^π +∫_0 ^( π) e^t sin ((π/4)+t)dt ⇒ (I/2)=−(1/( (√2)))(e^π +1)+(1/( (√2)))(e^π +1)+I ⇒ I=0 .](https://www.tinkutara.com/question/Q13625.png)
Commented by ajfour last updated on 22/May/17

Commented by Tinkutara last updated on 22/May/17

Commented by ajfour last updated on 22/May/17
