Menu Close

Evaluate-0-2pi-e-x-2-sin-x-2-pi-4-dx-




Question Number 13622 by Tinkutara last updated on 21/May/17
Evaluate: ∫_0 ^(2π) e^(x/2) sin ((x/2) + (π/4))dx
Evaluate:02πex2sin(x2+π4)dx
Answered by ajfour last updated on 22/May/17
I=∫_0 ^(  2π) e^(x/2) sin ((x/2)+(π/4))dx  (I/2)=∫_0 ^(  2π) e^(x/2) sin ((x/2)+(π/4))(dx/2)  let  t=(x/2)   ⇒  dt=(dx/2)  when x=0, t=0 ;   and for x=2π, t=π  (I/2)=∫_0 ^(  π) e^t sin ((π/4)+t)dt    =[e^t sin ((π/4)+t)]_0 ^π −∫_0 ^(  π) e^t cos ((π/4)+t)dt    =−(1/( (√2)))(e^π +1)−[e^t cos ((π/4)+t)]_0 ^π                                +∫_0 ^(  π) e^t sin ((π/4)+t)dt  ⇒ (I/2)=−(1/( (√2)))(e^π +1)+(1/( (√2)))(e^π +1)+I  ⇒  I=0 .
I=02πex/2sin(x2+π4)dxI2=02πex/2sin(x2+π4)dx2lett=x2dt=dx2whenx=0,t=0;andforx=2π,t=πI2=0πetsin(π4+t)dt=[etsin(π4+t)]0π0πetcos(π4+t)dt=12(eπ+1)[etcos(π4+t)]0π+0πetsin(π4+t)dtI2=12(eπ+1)+12(eπ+1)+II=0.
Commented by ajfour last updated on 22/May/17
cannot you confirm the answer..
cannotyouconfirmtheanswer..
Commented by Tinkutara last updated on 22/May/17
Answer given is 0.
Answergivenis0.
Commented by ajfour last updated on 22/May/17
thanks, notice the difference !
thanks,noticethedifference!

Leave a Reply

Your email address will not be published. Required fields are marked *