Menu Close

Evaluate-0-2pi-e-x-cos-pi-4-x-2-dx-




Question Number 13623 by Tinkutara last updated on 21/May/17
Evaluate: ∫_0 ^(2π) e^x  cos ((π/4) + (x/2))dx
Evaluate:02πexcos(π4+x2)dx
Answered by ajfour last updated on 21/May/17
I=∫_0 ^(  2π) e^x cos ((π/4)+(x/2))dx    =[e^(2π) (−(1/( (√2))))−(1/( (√2)))]+(1/2)∫_0 ^(  2π) e^x sin ((π/4)+(x/2))dx   =−(1/( (√2)))(e^(2π) +1)+((1/2))[−(1/( (√2)))(e^(2π) +1)]                                −(1/4)∫_0 ^(  2π) e^x cos ((π/4)+(x/2))dx  ⇒ I=−(3/(2(√2)))(e^(2π) +1)−(I/4)  ⇒ I=−((3(√2))/5)(e^(2π) +1) .
I=02πexcos(π4+x2)dx=[e2π(12)12]+1202πexsin(π4+x2)dx=12(e2π+1)+(12)[12(e2π+1)]1402πexcos(π4+x2)dxI=322(e2π+1)I4I=325(e2π+1).
Commented by ajfour last updated on 22/May/17
correct answer please ?
correctanswerplease?
Commented by Tinkutara last updated on 22/May/17
Thanks Sir! Your answer is right.
ThanksSir!Youranswerisright.

Leave a Reply

Your email address will not be published. Required fields are marked *