Menu Close

Evaluate-0-3-4-2xsin-1-2x-1-4x-2-dx-




Question Number 48955 by Abdulhafeez Abu qatada last updated on 30/Nov/18
Evaluate ∫_0 ^((√3)/4)  ((2xsin^(−1) (2x))/( (√(1−4x^2 )))) dx
Evaluate3402xsin1(2x)14x2dx
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Nov/18
2x=sinθ   2dx=cosθdθ  ∫_0 ^(π/3) ((sinθ×θ)/( (√(1−sin^2 θ))))×((cosθdθ)/2)  (1/2)∫_0 ^(π/3)  θsinθdθ  I=∫θsinθdθ  =θ∫sinθdθ−∫[(dθ/dθ)∫sinθdθ] dθ  =−θcosθ−∫−cosθdθ  =−θcosθ+sinθ+c  so required intregal is  (1/2)∣−θcosθ+sinθ∣_0 ^(π/3)   =(1/2)[(−(π/3)×(1/2)+((√3)/2))]  =((−π)/(12))+((√3)/4)
2x=sinθ2dx=cosθdθ0π3sinθ×θ1sin2θ×cosθdθ2120π3θsinθdθI=θsinθdθ=θsinθdθ[dθdθsinθdθ]dθ=θcosθcosθdθ=θcosθ+sinθ+csorequiredintregalis12θcosθ+sinθ0π3=12[(π3×12+32)]=π12+34
Answered by MJS last updated on 30/Nov/18
u′=((2x)/( (√(1−4x^2 )))) ⇒ u=−((√(1−4x^2 ))/4)  v=arcsin 2x ⇒ v′=(2/( (√(1−x^2 ))))  ∫u′v=uv−∫uv′  ∫((2xarcsin 2x)/( (√(1−4x^2 ))))=x−((√(1−4x^2 ))/2)arcsin 2x  ∫_0 ^((√3)/4)  ((2xarcsin 2x)/( (√(1−4x^2 )))) dx=((3(√3)−π)/(12))
u=2x14x2u=14x24v=arcsin2xv=21x2uv=uvuv2xarcsin2x14x2=x14x22arcsin2x3402xarcsin2x14x2dx=33π12
Answered by Abdulhafeez Abu qatada last updated on 02/Dec/18

Leave a Reply

Your email address will not be published. Required fields are marked *