Menu Close

Evaluate-0-pi-2-1-1-cos-cos-x-dx-




Question Number 83164 by niroj last updated on 28/Feb/20
     Evaluate:    ∫_0 ^( (π/2))  ((  1)/(1+cos 𝛂 cos x))dx
Evaluate:0π211+cosαcosxdx
Commented by mathmax by abdo last updated on 28/Feb/20
let I =∫_0 ^(π/2)   (dx/(1+cosα cosx)) changement tan((x/2))=t give  I =∫_0 ^1  (1/(1+cosα×((1−t^2 )/(1+t^2 ))))((2dt)/(1+t^2 )) =2∫_0 ^1  (dt/(1+t^2 +cosα(1−t^2 )))  =2 ∫_0 ^1  (dt/((1−cosα)t^2  +1+cosα)) =(2/(1−cosα)) ∫_0 ^1  (dt/(t^2  +((1+cosα)/(1−cosα))))  =(2/(1−cosα))∫_0 ^1  (dt/(t^2  +tan^2 ((α/2)))) =_(t=∣tan((α/2))∣u) (2/(1−cosα))∫_0 ^(∣cotan((α/2))∣) ((∣tan((α/2))∣du)/(tan^2 ((α/2))(1+u^2 )))  =(2/((1−cosα)∣tan((α/2))∣)) [arctanu]_0 ^(∣(1/(tan((α/2))))∣)   I=(2/((1−cosα)∣tan((α/2))∣)) arctan(∣(1/(tan((α/2))))∣)  case 1  tan((α/2))>0 ⇒I =((2cos((α/2)))/(2sin^2 ((α/2))×sin((α/2))))((π/2)−(α/2))  =((cos((α/2)))/(sin^3 ((α/2))))×(((π−α)/2))  case2 tan((α/2))<0 ⇒ I =−((cos((α/2)))/(sin^3 ((α/2))))×(−arctan((1/(tan((α/2)))))  =((cos((α/2)))/(sin^3 ((α/2))))(−(π/2)−(α/2)) =−((cos((α/2)))/(sin^3 ((α/2))))(((π+α)/2))
letI=0π2dx1+cosαcosxchangementtan(x2)=tgiveI=0111+cosα×1t21+t22dt1+t2=201dt1+t2+cosα(1t2)=201dt(1cosα)t2+1+cosα=21cosα01dtt2+1+cosα1cosα=21cosα01dtt2+tan2(α2)=t=∣tan(α2)u21cosα0cotan(α2)tan(α2)dutan2(α2)(1+u2)=2(1cosα)tan(α2)[arctanu]01tan(α2)I=2(1cosα)tan(α2)arctan(1tan(α2))case1tan(α2)>0I=2cos(α2)2sin2(α2)×sin(α2)(π2α2)=cos(α2)sin3(α2)×(πα2)case2tan(α2)<0I=cos(α2)sin3(α2)×(arctan(1tan(α2))=cos(α2)sin3(α2)(π2α2)=cos(α2)sin3(α2)(π+α2)
Commented by niroj last updated on 28/Feb/20
 thank you both of you.
thankyoubothofyou.
Answered by mr W last updated on 28/Feb/20
(1/(1+cos α cos x))  =(1/(cos α))×(1/((1/(cos α))+cos x))  let a=(1/(cos α)) ≥1 or ≤−1  ∫_0 ^( (π/2))  ((  1)/(1+cos 𝛂 cos x))dx  =a∫_0 ^(π/2) (dx/(a+cos x))  =((2a)/( (√(a^2 −1))))[tan^(−1) (((√(a−1))/( (√(a+1))))tan (x/2))]_0 ^(π/2)   =((2a)/( (√(a^2 −1))))×tan^(−1) (((√(a−1))/( (√(a+1)))))  =(2/( (√(1−(1/a^2 )))))×tan^(−1) (((√(1−(1/a)))/( (√(1+(1/a))))))  =(2/( (√(1−cos^2  α))))×tan^(−1) (((√(1−cos α))/( (√(1+cos α)))))  =(2/(sin α))×tan^(−1) (((√(1−1+2 sin^2  (α/2)))/( (√(1+2 cos^2  (α/2)−1)))))  =(2/(sin α))×tan^(−1) (tan (α/2))  =(2/(sin α))×(α/2)  =(α/(sin α))
11+cosαcosx=1cosα×11cosα+cosxleta=1cosα1or10π211+cosαcosxdx=a0π2dxa+cosx=2aa21[tan1(a1a+1tanx2)]0π2=2aa21×tan1(a1a+1)=211a2×tan1(11a1+1a)=21cos2α×tan1(1cosα1+cosα)=2sinα×tan1(11+2sin2α21+2cos2α21)=2sinα×tan1(tanα2)=2sinα×α2=αsinα
Answered by TANMAY PANACEA last updated on 28/Feb/20
∫_0 ^(π/2) (dx/(cosα((1/(cosα))+cosx)))   [(1/(cosα))=a  ]  (1/(cosα))∫_0 ^(π/2) (dx/(a+cosx))  (1/(cosα))∫_0 ^(π/2) (dx/(a+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))  (1/(cosα))∫_0 ^(π/2) ((sec^2 (x/2))/((a+1)+tan^2 (x/2)×(a−1)))dx  (1/(cosα))×(1/(a−1))∫_0 ^(π/2) ((sec^2 (x/2))/(((a+1)/(a−1))+tan^2 (x/2)))dx  (1/(cosα))×(1/((1/(cosα))−1))∫_0 ^(π/2) ((sec^2 (x/2))/(((1+cosα)/(1−cosα))+tan^2 (x/2)))dx  (1/(1−cosα))∫_0 ^(π/2) ((d(tan(x/2))×2)/(cot^2 (α/2)+tan^2 (x/2)))  (2/(2sin^2 (α/2)))×(1/(cot(α/2)))×∣tan^(−1) (((tan(x/2))/(cot(α/2))))∣_0 ^(π/2)   (2/(sinα))×tan^(−1) ((1/(cot(α/2))))=(2/(sinα))×(α/2)=(α/(sinα))  pls check...
0π2dxcosα(1cosα+cosx)[1cosα=a]1cosα0π2dxa+cosx1cosα0π2dxa+1tan2x21+tan2x21cosα0π2sec2x2(a+1)+tan2x2×(a1)dx1cosα×1a10π2sec2x2a+1a1+tan2x2dx1cosα×11cosα10π2sec2x21+cosα1cosα+tan2x2dx11cosα0π2d(tanx2)×2cot2α2+tan2x222sin2α2×1cotα2×tan1(tanx2cotα2)0π22sinα×tan1(1cotα2)=2sinα×α2=αsinαplscheck
Commented by niroj last updated on 28/Feb/20
 great dear...
greatdear
Commented by TANMAY PANACEA last updated on 28/Feb/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *