Question Number 83164 by niroj last updated on 28/Feb/20
$$ \\ $$$$ \\ $$$$\:\mathrm{Evaluate}: \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\:\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{cos}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$
Commented by mathmax by abdo last updated on 28/Feb/20
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+{cos}\alpha\:{cosx}}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}+{cos}\alpha×\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} +{cos}\alpha\left(\mathrm{1}−{t}^{\mathrm{2}} \right)} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left(\mathrm{1}−{cos}\alpha\right){t}^{\mathrm{2}} \:+\mathrm{1}+{cos}\alpha}\:=\frac{\mathrm{2}}{\mathrm{1}−{cos}\alpha}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+\frac{\mathrm{1}+{cos}\alpha}{\mathrm{1}−{cos}\alpha}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}−{cos}\alpha}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}^{\mathrm{2}} \:+{tan}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)}\:=_{{t}=\mid{tan}\left(\frac{\alpha}{\mathrm{2}}\right)\mid{u}} \frac{\mathrm{2}}{\mathrm{1}−{cos}\alpha}\int_{\mathrm{0}} ^{\mid{cotan}\left(\frac{\alpha}{\mathrm{2}}\right)\mid} \frac{\mid{tan}\left(\frac{\alpha}{\mathrm{2}}\right)\mid{du}}{{tan}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{2}}{\left(\mathrm{1}−{cos}\alpha\right)\mid{tan}\left(\frac{\alpha}{\mathrm{2}}\right)\mid}\:\left[{arctanu}\right]_{\mathrm{0}} ^{\mid\frac{\mathrm{1}}{{tan}\left(\frac{\alpha}{\mathrm{2}}\right)}\mid} \\ $$$${I}=\frac{\mathrm{2}}{\left(\mathrm{1}−{cos}\alpha\right)\mid{tan}\left(\frac{\alpha}{\mathrm{2}}\right)\mid}\:{arctan}\left(\mid\frac{\mathrm{1}}{{tan}\left(\frac{\alpha}{\mathrm{2}}\right)}\mid\right) \\ $$$${case}\:\mathrm{1}\:\:{tan}\left(\frac{\alpha}{\mathrm{2}}\right)>\mathrm{0}\:\Rightarrow{I}\:=\frac{\mathrm{2}{cos}\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)×{sin}\left(\frac{\alpha}{\mathrm{2}}\right)}\left(\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}}\right) \\ $$$$=\frac{{cos}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}^{\mathrm{3}} \left(\frac{\alpha}{\mathrm{2}}\right)}×\left(\frac{\pi−\alpha}{\mathrm{2}}\right) \\ $$$${case}\mathrm{2}\:{tan}\left(\frac{\alpha}{\mathrm{2}}\right)<\mathrm{0}\:\Rightarrow\:{I}\:=−\frac{{cos}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}^{\mathrm{3}} \left(\frac{\alpha}{\mathrm{2}}\right)}×\left(−{arctan}\left(\frac{\mathrm{1}}{{tan}\left(\frac{\alpha}{\mathrm{2}}\right)}\right)\right. \\ $$$$=\frac{{cos}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}^{\mathrm{3}} \left(\frac{\alpha}{\mathrm{2}}\right)}\left(−\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}}\right)\:=−\frac{{cos}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}^{\mathrm{3}} \left(\frac{\alpha}{\mathrm{2}}\right)}\left(\frac{\pi+\alpha}{\mathrm{2}}\right) \\ $$
Commented by niroj last updated on 28/Feb/20
$$\:\mathrm{thank}\:\mathrm{you}\:\mathrm{both}\:\mathrm{of}\:\mathrm{you}. \\ $$
Answered by mr W last updated on 28/Feb/20
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:\alpha\:\mathrm{cos}\:{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{cos}\:\alpha}×\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{cos}\:\alpha}+\mathrm{cos}\:{x}} \\ $$$${let}\:{a}=\frac{\mathrm{1}}{\mathrm{cos}\:\alpha}\:\geqslant\mathrm{1}\:{or}\:\leqslant−\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\:\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{cos}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$$$={a}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{a}+\mathrm{cos}\:{x}} \\ $$$$=\frac{\mathrm{2}{a}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{a}−\mathrm{1}}}{\:\sqrt{{a}+\mathrm{1}}}\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}{a}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}×\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{a}−\mathrm{1}}}{\:\sqrt{{a}+\mathrm{1}}}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}}×\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{a}}}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{a}}}}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha}}×\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\alpha}}{\:\sqrt{\mathrm{1}+\mathrm{cos}\:\alpha}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{sin}\:\alpha}×\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}−\mathrm{1}+\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}}}{\:\sqrt{\mathrm{1}+\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}−\mathrm{1}}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{sin}\:\alpha}×\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{sin}\:\alpha}×\frac{\alpha}{\mathrm{2}} \\ $$$$=\frac{\alpha}{\mathrm{sin}\:\alpha} \\ $$
Answered by TANMAY PANACEA last updated on 28/Feb/20
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{cos}\alpha\left(\frac{\mathrm{1}}{{cos}\alpha}+{cosx}\right)}\:\:\:\left[\frac{\mathrm{1}}{{cos}\alpha}={a}\:\:\right] \\ $$$$\frac{\mathrm{1}}{{cos}\alpha}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{a}+{cosx}} \\ $$$$\frac{\mathrm{1}}{{cos}\alpha}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{a}+\frac{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}} \\ $$$$\frac{\mathrm{1}}{{cos}\alpha}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\left({a}+\mathrm{1}\right)+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}×\left({a}−\mathrm{1}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{{cos}\alpha}×\frac{\mathrm{1}}{{a}−\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\frac{\mathrm{1}}{{cos}\alpha}×\frac{\mathrm{1}}{\frac{\mathrm{1}}{{cos}\alpha}−\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\frac{\mathrm{1}+{cos}\alpha}{\mathrm{1}−{cos}\alpha}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{cos}\alpha}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)×\mathrm{2}}{{cot}^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\frac{\mathrm{2}}{\mathrm{2}{sin}^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}}×\frac{\mathrm{1}}{{cot}\frac{\alpha}{\mathrm{2}}}×\mid{tan}^{−\mathrm{1}} \left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{{cot}\frac{\alpha}{\mathrm{2}}}\right)\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\frac{\mathrm{2}}{{sin}\alpha}×{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{cot}\frac{\alpha}{\mathrm{2}}}\right)=\frac{\mathrm{2}}{\boldsymbol{{sin}}\alpha}×\frac{\alpha}{\mathrm{2}}=\frac{\alpha}{{sin}\alpha} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}}… \\ $$
Commented by niroj last updated on 28/Feb/20
$$\:\mathrm{great}\:\mathrm{dear}… \\ $$
Commented by TANMAY PANACEA last updated on 28/Feb/20
$${thank}\:{you}\:{sir} \\ $$