Question Number 83164 by niroj last updated on 28/Feb/20

Commented by mathmax by abdo last updated on 28/Feb/20
![let I =∫_0 ^(π/2) (dx/(1+cosα cosx)) changement tan((x/2))=t give I =∫_0 ^1 (1/(1+cosα×((1−t^2 )/(1+t^2 ))))((2dt)/(1+t^2 )) =2∫_0 ^1 (dt/(1+t^2 +cosα(1−t^2 ))) =2 ∫_0 ^1 (dt/((1−cosα)t^2 +1+cosα)) =(2/(1−cosα)) ∫_0 ^1 (dt/(t^2 +((1+cosα)/(1−cosα)))) =(2/(1−cosα))∫_0 ^1 (dt/(t^2 +tan^2 ((α/2)))) =_(t=∣tan((α/2))∣u) (2/(1−cosα))∫_0 ^(∣cotan((α/2))∣) ((∣tan((α/2))∣du)/(tan^2 ((α/2))(1+u^2 ))) =(2/((1−cosα)∣tan((α/2))∣)) [arctanu]_0 ^(∣(1/(tan((α/2))))∣) I=(2/((1−cosα)∣tan((α/2))∣)) arctan(∣(1/(tan((α/2))))∣) case 1 tan((α/2))>0 ⇒I =((2cos((α/2)))/(2sin^2 ((α/2))×sin((α/2))))((π/2)−(α/2)) =((cos((α/2)))/(sin^3 ((α/2))))×(((π−α)/2)) case2 tan((α/2))<0 ⇒ I =−((cos((α/2)))/(sin^3 ((α/2))))×(−arctan((1/(tan((α/2))))) =((cos((α/2)))/(sin^3 ((α/2))))(−(π/2)−(α/2)) =−((cos((α/2)))/(sin^3 ((α/2))))(((π+α)/2))](https://www.tinkutara.com/question/Q83176.png)
Commented by niroj last updated on 28/Feb/20

Answered by mr W last updated on 28/Feb/20
![(1/(1+cos α cos x)) =(1/(cos α))×(1/((1/(cos α))+cos x)) let a=(1/(cos α)) ≥1 or ≤−1 ∫_0 ^( (π/2)) (( 1)/(1+cos 𝛂 cos x))dx =a∫_0 ^(π/2) (dx/(a+cos x)) =((2a)/( (√(a^2 −1))))[tan^(−1) (((√(a−1))/( (√(a+1))))tan (x/2))]_0 ^(π/2) =((2a)/( (√(a^2 −1))))×tan^(−1) (((√(a−1))/( (√(a+1))))) =(2/( (√(1−(1/a^2 )))))×tan^(−1) (((√(1−(1/a)))/( (√(1+(1/a)))))) =(2/( (√(1−cos^2 α))))×tan^(−1) (((√(1−cos α))/( (√(1+cos α))))) =(2/(sin α))×tan^(−1) (((√(1−1+2 sin^2 (α/2)))/( (√(1+2 cos^2 (α/2)−1))))) =(2/(sin α))×tan^(−1) (tan (α/2)) =(2/(sin α))×(α/2) =(α/(sin α))](https://www.tinkutara.com/question/Q83180.png)
Answered by TANMAY PANACEA last updated on 28/Feb/20
![∫_0 ^(π/2) (dx/(cosα((1/(cosα))+cosx))) [(1/(cosα))=a ] (1/(cosα))∫_0 ^(π/2) (dx/(a+cosx)) (1/(cosα))∫_0 ^(π/2) (dx/(a+((1−tan^2 (x/2))/(1+tan^2 (x/2))))) (1/(cosα))∫_0 ^(π/2) ((sec^2 (x/2))/((a+1)+tan^2 (x/2)×(a−1)))dx (1/(cosα))×(1/(a−1))∫_0 ^(π/2) ((sec^2 (x/2))/(((a+1)/(a−1))+tan^2 (x/2)))dx (1/(cosα))×(1/((1/(cosα))−1))∫_0 ^(π/2) ((sec^2 (x/2))/(((1+cosα)/(1−cosα))+tan^2 (x/2)))dx (1/(1−cosα))∫_0 ^(π/2) ((d(tan(x/2))×2)/(cot^2 (α/2)+tan^2 (x/2))) (2/(2sin^2 (α/2)))×(1/(cot(α/2)))×∣tan^(−1) (((tan(x/2))/(cot(α/2))))∣_0 ^(π/2) (2/(sinα))×tan^(−1) ((1/(cot(α/2))))=(2/(sinα))×(α/2)=(α/(sinα)) pls check...](https://www.tinkutara.com/question/Q83184.png)
Commented by niroj last updated on 28/Feb/20

Commented by TANMAY PANACEA last updated on 28/Feb/20
