Menu Close

evaluate-0-pi-dx-a-bcosx-a-gt-0-and-deduce-that-0-pi-dx-a-bcos-x-2-pia-a-2-b-2-3-2-a-2-gt-b-2-and-0-pi-cos-x-dx-a-bcos-x-2-




Question Number 188511 by universe last updated on 02/Mar/23
   evaluate  ∫_0 ^π (dx/(a+bcosx ))      ,   a > 0     and deduce that     ∫_0 ^π (dx/((a+bcos x)^2 ))  =   ((πa)/((a^2 −b^2 )^(3/2) ))  ;  a^2 >b^2   and  ∫_0 ^π ((cos x dx)/((a+bcos x)^2 ))  = ((−πb)/((a^2 −b^2 )^(3/2) ))  ;  a^2 >b^2
$$\:\:\:{evaluate} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{{a}+{b}\mathrm{cos}{x}\:}\:\:\:\:\:\:,\:\:\:{a}\:>\:\mathrm{0} \\ $$$$\:\:\:{and}\:{deduce}\:{that} \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:\:=\:\:\:\frac{\pi{a}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:;\:\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \\ $$$${and}\:\:\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}\:{x}\:{dx}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:\:=\:\frac{−\pi{b}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\:;\:\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *