Menu Close

evaluate-0-pi-log-a-cos-x-dx-




Question Number 171198 by infinityaction last updated on 09/Jun/22
    evaluate          ∫_0 ^( π) log (a+cos x)dx
evaluate0πlog(a+cosx)dx
Answered by aleks041103 last updated on 09/Jun/22
I(a)=∫_0 ^π ln(a+cosx)dx  I ′(a)=∫_0 ^π (dx/(a+cos(x)))  t=tg(x/2)  ⇒cosx=1−2sin^2 (x/2)=  =1−(2/(csc^2 (x/2)))=1−(2/(1+ctg^2 (x/2)))=  =1−(2/(1+(1/(tg^2 (x/2)))))=1−(2/(1+(1/t^2 )))=  =1−((2t^2 )/(1+t^2 ))=((1−t^2 )/(1+t^2 ))  x=2arctg(t)⇒dx=((2dt)/(1+t^2 ))  x=0→t=0  x=π→t→∞  ⇒I ′(a)=∫_0 ^∞ ((2dt)/(a(1+t^2 )+1−t^2 ))=  =2∫_0 ^∞ (dt/((a−1)t^2 +a+1))=  =(2/(a+1))∫_0 ^∞ (dt/( ((√((a−1)/(a+1)))t)^2 +1))=  =(2/(a+1))(√((a+1)/(a−1)))∫_0 ^∞ ((d((√((a−1)/(a+1)))t))/(((√((a−1)/(a+1)))t)^2 +1))=  =(2/( (√(a^2 −1)))) (π/2)=(π/( (√(a^2 −1))))=I ′(a)  ⇒I(a)=I(1)+π∫_1 ^a (da/( (√(a^2 −1))))  a=cosh(x)  da=sinh(x)dx  ⇒∫(da/( (√(a^2 −1))))=∫((sinh(x)dx)/( (√(cosh^2 x−1))))=x=arccosh(a)  ⇒I(a)=I(1)+π(arccosh(a)−arccosh(1))  I(a)=I(1)+π arccosh(a)    I(1)=∫_0 ^π ln(1+cos(x))dx  ln(1+cos(x))=ln(2cos^2 (x/2))=  =ln(2)+2ln(cos(x/2))  ⇒I(1)=πln(2)+4∫_0 ^(π/2) ln(cos(x))dx  ∫_0 ^(π/2) ln(cosx)dx=∫_0 ^(π/2) ln(sinx)dx=i  2i=∫_0 ^(π/2) ln(sinxcosx)dx=∫_0 ^(π/2) ln((1/2)sin(2x))dx=  =−((πln(2))/2)+∫_0 ^(π/2) ln(sin(2x))dx=  =−((πln(2))/2)+(1/2)∫_0 ^π ln(sin(u))du=  =−((πln(2))/2)+i=2i  ⇒i=−((πln(2))/2)  ⇒I(1)=πln(2)+4(−((πln(2))/2))=−πln(2)  ⇒I(a)=π(arccosh(a)−ln(2))  cosh(x)=((e^x +e^(−x) )/2)=((t+(1/t))/2)=k  ⇒2kt=t^2 +1  ⇒t^2 −2kt+1=0  ⇒t=e^x =((2k±(√(4k^2 −4)))/2)=k±(√(k^2 −1))  ⇒arccosh(x)=ln(x+(√(x^2 −1)))  ∫_0 ^( π) ln(a+cos(x))dx=π ln(((a+(√(a^2 −1)))/2))
I(a)=0πln(a+cosx)dxI(a)=0πdxa+cos(x)t=tg(x/2)cosx=12sin2(x/2)==12csc2(x/2)=121+ctg2(x/2)==121+1tg2(x/2)=121+1t2==12t21+t2=1t21+t2x=2arctg(t)dx=2dt1+t2x=0t=0x=πtI(a)=02dta(1+t2)+1t2==20dt(a1)t2+a+1==2a+10dt(a1a+1t)2+1==2a+1a+1a10d(a1a+1t)(a1a+1t)2+1==2a21π2=πa21=I(a)I(a)=I(1)+π1adaa21a=cosh(x)da=sinh(x)dxdaa21=sinh(x)dxcosh2x1=x=arccosh(a)I(a)=I(1)+π(arccosh(a)arccosh(1))I(a)=I(1)+πarccosh(a)I(1)=0πln(1+cos(x))dxln(1+cos(x))=ln(2cos2(x/2))==ln(2)+2ln(cos(x/2))I(1)=πln(2)+40π/2ln(cos(x))dx0π/2ln(cosx)dx=0π/2ln(sinx)dx=i2i=0π/2ln(sinxcosx)dx=0π/2ln(12sin(2x))dx==πln(2)2+0π/2ln(sin(2x))dx==πln(2)2+120πln(sin(u))du==πln(2)2+i=2ii=πln(2)2I(1)=πln(2)+4(πln(2)2)=πln(2)I(a)=π(arccosh(a)ln(2))cosh(x)=ex+ex2=t+1t2=k2kt=t2+1t22kt+1=0t=ex=2k±4k242=k±k21arccosh(x)=ln(x+x21)0πln(a+cos(x))dx=πln(a+a212)
Commented by infinityaction last updated on 10/Jun/22
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *