Menu Close

Evaluate-0-sin-x-1-3-log-1-x-x-dx-




Question Number 144351 by mnjuly1970 last updated on 24/Jun/21
            Evaluate   ::      𝛗:=∫_0 ^( ∞) (( sin (x)^(1/( 3 ))  )log ((1/x) ))/x)dx=?
Evaluate::\boldsymbolϕ:=0sinx3)log(1x)xdx=?
Answered by Dwaipayan Shikari last updated on 24/Jun/21
∫_0 ^∞ ((sin(u))/u^α )=(π/(2Γ(α)sin((π/2)α)))  ∫_0 ^∞ ((sin(u))/u^α )log((1/u))du=−((πΓ′(α))/(2Γ(α)^2 sin((π/2)α)))−((πcosec(((πα)/2))cot(((πα)/2)))/(2Γ(α)))  Here  ∫_0 ^∞ ((sin((x)^(1/3) ))/x)log((1/x))dx  x=u^3   ∫_0 ^∞ ((sin(u))/u)log((1/u))du=((πγ)/2)
0sin(u)uα=π2Γ(α)sin(π2α)0sin(u)uαlog(1u)du=πΓ(α)2Γ(α)2sin(π2α)πcosec(πα2)cot(πα2)2Γ(α)Here0sin(x3)xlog(1x)dxx=u30sin(u)ulog(1u)du=πγ2
Commented by mnjuly1970 last updated on 24/Jun/21
    thanks alot...
thanksalotthanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *