Menu Close

Evaluate-1-0-1-dx-1-x-1-x-2-2-0-2-ln-1-2x-1-x-2-3-0-pi-x-1-sin-3-x-3picosx-4sinx-sin-2-x-4-dx-4-0-pi-x-2-cos-2-x-xsinx-cosx-1-




Question Number 54074 by rahul 19 last updated on 28/Jan/19
Evaluate :  1)      ∫_0 ^( 1) (dx/( (√(1+x))+(√(1−x))+2))     2)     ∫_0 ^( 2) ((ln(1+2x))/(1+x^2 ))  3)   ∫_0 ^( π) (x/( (√(1+sin^3 x))))((3πcosx+4sinx)sin^2 x+4)dx  4)  ∫_0 ^( π)  ((x^2 cos^2 x−xsinx−cosx−1)/((1+xsinx)^2 )) dx.
Evaluate:1)01dx1+x+1x+22)02ln(1+2x)1+x23)0πx1+sin3x((3πcosx+4sinx)sin2x+4)dx4)0πx2cos2xxsinxcosx1(1+xsinx)2dx.
Commented by maxmathsup by imad last updated on 28/Jan/19
1) let I =∫_0 ^1     (dx/( (√(1+x)) +(√(1−x)) +2))  changement x=cos θ  give   I = −∫_0 ^(π/2)     ((−sinθ dθ)/( (√2)cos((θ/2))+(√2)sin((θ/2)) +2)) =(1/( (√2))) ∫_0 ^(π/2)    ((sinθ)/(cos((θ/2)) +sin((θ/2))+(√2)))dθ  =_((θ/2)=t)    (1/( (√2))) ∫_0 ^(π/4)    ((sin(2t))/(cost +sint +(√2))) (2)dt =(√2)∫_0 ^(π/4)   ((sin(2t))/(cost +sint +(√2))) dt  =2(√2)∫_0 ^(π/4)   ((sint cost)/(cost +sint +(√2))) dt =_(tan((t/2)) =x)     2(√2)∫_0 ^((√2)−1)     (((2x(1−x^2 ))/((1+x^2 )^2 ))/(((1−x^2 )/(1+x^2 )) +((2x)/(1+x^2 )) +(√2))) ((2dx)/(1+x^2 ))  =8(√2)∫_0 ^((√2)−1)       ((x(1−x^2 ))/((1+x^2 )^2 (1−x^2  +2x+(√2)(1+x^2 ))))dx  =8(√2)∫_0 ^((√2)−1)    ((x(1−x^2 ))/((1+x^2 )^2 (((√2)−1)x^2  +2x +1+(√2))))dx let decompose  F(x) =((x(1−x^2 ))/((x^2  +1)^2 { ((√2)−1)x^2  +2x +1+(√2)}))  roots of ((√2)−1)x^2  +2x +1+(√2)  Δ =4−4((√2)−1)((√2)+1) =0 ⇒one root x_0 =−(b/(2a)) =−(2/(2((√2)−1))) =((−1)/( (√2)−1)) ⇒  ((√2)−1)x^2  +2x +1+(√2)=((√2)−1)(x−x_0 )^2  =((√2)−1)(x+(1/( (√2)−1)))^2   =((√2)−1)(x +(√2)+1)^2  ⇒  F(x) =(a/(x+(√2) +1)) +(b/((x+(√2) +1)^2 )) +((cx +d)/(x^2  +1)) + ((ex +f)/((x^2  +1)^2 ))  b=lim_(x→−(1+(√2)))     (x+(√2)+1)^2 F(x)....after finding the coefficients  we get ∫ F(x)dx =aln∣x+(√2)+1∣−(b/((x+(√2) +1))) +∫  ((cx+d)/(x^2  +1))dx +∫  ((ex +f)/((x^2  +1)^2 ))dx  ...be continued...
1)letI=01dx1+x+1x+2changementx=cosθgiveI=0π2sinθdθ2cos(θ2)+2sin(θ2)+2=120π2sinθcos(θ2)+sin(θ2)+2dθ=θ2=t120π4sin(2t)cost+sint+2(2)dt=20π4sin(2t)cost+sint+2dt=220π4sintcostcost+sint+2dt=tan(t2)=x220212x(1x2)(1+x2)21x21+x2+2x1+x2+22dx1+x2=82021x(1x2)(1+x2)2(1x2+2x+2(1+x2))dx=82021x(1x2)(1+x2)2((21)x2+2x+1+2)dxletdecomposeF(x)=x(1x2)(x2+1)2{(21)x2+2x+1+2}rootsof(21)x2+2x+1+2Δ=44(21)(2+1)=0onerootx0=b2a=22(21)=121(21)x2+2x+1+2=(21)(xx0)2=(21)(x+121)2=(21)(x+2+1)2F(x)=ax+2+1+b(x+2+1)2+cx+dx2+1+ex+f(x2+1)2b=limx(1+2)(x+2+1)2F(x).afterfindingthecoefficientswegetF(x)dx=alnx+2+1b(x+2+1)+cx+dx2+1dx+ex+f(x2+1)2dxbecontinued
Commented by maxmathsup by imad last updated on 28/Jan/19
2) let f(t) =∫_0 ^2  ((ln(1+tx))/(1+x^2 )) dx  with t>0 ⇒  f^′ (t) =∫_0 ^2   (x/((1+tx)(1+x^2 )))dx =_(tx =u)   ∫_0 ^(2t)    (u/(t(1+u)(1+(u^2 /t^2 )))) (du/t)  =∫_0 ^(2t)    ((udu)/((u+1)(u^2  +t^2 )))  let decompose F(u) = (u/((u+1)(u^2  +t^2 ))) ⇒  F(u) =(a/(u+1)) +((bu +c)/(u^2  +t^2 ))  a =lim_(u→−1) (u+1)F(u) =−(1/(t^2  +1))  lim_(u→+∞) u F(u) =0 =a+b ⇒b =(1/(t^2  +1))  F(0) =0 =a +(c/t^2 ) ⇒c =−at^2  =(t^2 /(t^(2 )  +1)) ⇒  F(u) =−(1/((t^2  +1)(u+1))) +(((1/(t^2  +1 ))u +(t^2 /(t^2  +1)))/(u^2  +t^2 ))  =(1/(t^2  +1)){ −(1/(u+1)) +((u +t^2 )/(u^2  +t^2 ))} ⇒∫_0 ^(2t)   F(u)du  =(1/(t^2  +1)) {−∫_0 ^(2t)  (du/(u+1)) +∫_0 ^(2t)   ((u+t^2 )/(u^2  +t^2 )) du}  =(1/(t^2  +1)){−[ln∣u+1∣]_0 ^(2t)  + (1/2)[ln(u^2  +t^2 )]_0 ^(2t)   +2t^2  ∫_0 ^(2t)    (du/(u^2  +t^2 ))}  =(1/(t^2  +1)){ −ln(1+2t) +(1/2)( ln(5t^2 )−ln(t^2 )) +2t^2  ∫_0 ^(2t)   (du/(u^2  +t^2 ))}  =−((ln(1+2t))/(t^2  +1)) +((ln(5))/(2(t^2  +1))) +((2t^2 )/(t^2  +1)) ∫_0 ^(2t)   (du/(u^2  +t^2 )) but  ∫_0 ^(2t)    (du/(u^2  +t^2 )) =_(u =tα)    ∫_0 ^2    ((tdα)/(t^2 (1+α^2 ))) =(1/t) ∫_0 ^2   (dα/(1+α^2 )) =((arctan(2))/t) ⇒  f^′ (t) =−((ln(1+2t))/(t^2  +1)) +((ln(5))/(2(t^2  +1))) +((2arctan(2)t)/(t^2  +1)) ⇒  f(t) =−∫_0 ^t   ((ln(1+2x))/(1+x^2 ))dx +((ln(5))/2) ∫_0 ^t  (dx/(1+x^2 )) + arctan(2) ∫_0 ^t   ((2x)/(1+x^2 ))dx +c   f(t) =−∫_0 ^t   ((ln(1+2x))/(1+x^2 ))dx +((ln(5))/2) arctan(t) +arctan(2)ln(1+t^2 ) +c  f(0)=0 ⇒c =0 ⇒  f(t) =−∫_0 ^t   ((ln(1+2x))/(1+x^2 ))dx +((ln(5))/2) arctan(t)  +arctan(2)ln(1+t^2 ) =∫_0 ^2  ((ln(1+tx))/(1+x^2 ))dx  we have f(2) =−∫_0 ^2   ((ln(1+2x))/(1+x^2 )) dx +((ln(5))/2) arctan(2) +ln(5)arctan(2)  =∫_0 ^2  ((ln(1+2x))/(1+x^2 ))dx ⇒ 2 ∫_0 ^2   ((ln(1+2x))/(1+x^2 ))dx =(3/2)ln(5) arctan(2)  ⇒  ∫_0 ^2    ((ln(1+2x))/(1+x^2 ))dx =(3/4)ln(5)arctan(2) .i
2)letf(t)=02ln(1+tx)1+x2dxwitht>0f(t)=02x(1+tx)(1+x2)dx=tx=u02tut(1+u)(1+u2t2)dut=02tudu(u+1)(u2+t2)letdecomposeF(u)=u(u+1)(u2+t2)F(u)=au+1+bu+cu2+t2a=limu1(u+1)F(u)=1t2+1limu+uF(u)=0=a+bb=1t2+1F(0)=0=a+ct2c=at2=t2t2+1F(u)=1(t2+1)(u+1)+1t2+1u+t2t2+1u2+t2=1t2+1{1u+1+u+t2u2+t2}02tF(u)du=1t2+1{02tduu+1+02tu+t2u2+t2du}=1t2+1{[lnu+1]02t+12[ln(u2+t2)]02t+2t202tduu2+t2}=1t2+1{ln(1+2t)+12(ln(5t2)ln(t2))+2t202tduu2+t2}=ln(1+2t)t2+1+ln(5)2(t2+1)+2t2t2+102tduu2+t2but02tduu2+t2=u=tα02tdαt2(1+α2)=1t02dα1+α2=arctan(2)tf(t)=ln(1+2t)t2+1+ln(5)2(t2+1)+2arctan(2)tt2+1f(t)=0tln(1+2x)1+x2dx+ln(5)20tdx1+x2+arctan(2)0t2x1+x2dx+cf(t)=0tln(1+2x)1+x2dx+ln(5)2arctan(t)+arctan(2)ln(1+t2)+cf(0)=0c=0f(t)=0tln(1+2x)1+x2dx+ln(5)2arctan(t)+arctan(2)ln(1+t2)=02ln(1+tx)1+x2dxwehavef(2)=02ln(1+2x)1+x2dx+ln(5)2arctan(2)+ln(5)arctan(2)=02ln(1+2x)1+x2dx202ln(1+2x)1+x2dx=32ln(5)arctan(2)02ln(1+2x)1+x2dx=34ln(5)arctan(2).i
Commented by rahul 19 last updated on 29/Jan/19
thank you prof Abdo.
thankyouprofAbdo.
Commented by rahul 19 last updated on 29/Jan/19
Everyone pls try Q.3,4 also.
EveryoneplstryQ.3,4also.
Commented by maxmathsup by imad last updated on 29/Jan/19
you are welcome sir.
youarewelcomesir.
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
4)∫_0 ^π (((1+xsinx)(du/dx)−u(d/dx)(1+xsinx))/((1+xsinx)^2 ))dx  ∫_0 ^π (d/dx)((u/(1+xsinx)))dx  ∫_0 ^π d((u/(1+xsinx)))  ∣(u/(1+xsinx))∣_0 ^π   u=g(x)say  =((g(π))/(1+πsinπ))−((g(0))/(1+0×sin0))  =g(π)−g(0)  wait i have to find g(x)=u...
4)0π(1+xsinx)dudxuddx(1+xsinx)(1+xsinx)2dx0πddx(u1+xsinx)dx0πd(u1+xsinx)u1+xsinx0πu=g(x)say=g(π)1+πsinπg(0)1+0×sin0=g(π)g(0)waitihavetofindg(x)=u

Leave a Reply

Your email address will not be published. Required fields are marked *