Question Number 54070 by rahul 19 last updated on 28/Jan/19

Commented by maxmathsup by imad last updated on 28/Jan/19
![4) ∫_0 ^2 ((4x+10)/((x^2 +5x +6)^2 )) =2 ∫_0 ^2 ((2x+5)/((x^2 +5x+6)^2 )) =[−2 (1/(x^2 +5x +6))]_0 ^2 =−2( (1/(20)) −(1/6)) =(1/3) −(1/(10)) =(7/(30)).](https://www.tinkutara.com/question/Q54083.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19

Commented by rahul 19 last updated on 30/Jan/19

Commented by Meritguide1234 last updated on 30/Jan/19

Commented by maxmathsup by imad last updated on 30/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
![2)∫_0 ^(π/2) ((sin^2 nθ)/(sin^2 θ))dθ [n=10] I_n =(1/2)∫_0 ^(π/2) ((1−cos2nθ)/(sin^2 θ))dθ I_n −I_(n−2) =(1/2)∫_0 ^(π/2) ((cos(2n−2)θ−cos2nθ)/(sin^2 θ))dθ =(1/2)∫_0 ^(π/2) ((2sin(2n−1)θsinθ)/(sin^2 θ))dθ =∫_0 ^(π/2) ((sin(2n−1)θ)/(sinθ))dθ J_n =I_n −I_(n−1) J_n −J_(n−1) =∫_0 ^(π/2) ((sin(2n−1)θ−sin(2n−3)θ)/(sinθ))dθ =∫_0 ^(π/2) ((2cos(2n−2)θsinθ)/(sinθ))dθ =2∣((sin(2n−2)θ)/(2n−2))∣_0 ^(π/2) =0 so J_n −J_(n−1) =0 J_n =J_(n−1) I_n −I_(n−1) =I_(n−1) −I_(n−2) I_n =2I_(n−1) −I_(n−2) ∫_0 ^(π/2) ((sin^2 (nθ))/(sin^2 θ))=I_n we have to find I_(10) I_n =2I_(n−1) −I_(n−2) [I_0 =0] I_2 =2I_1 −I_0 =2I_1 −0=2×(π/2) =π [I_1 =(π/2)] I_3 =2I_2 −I_1 =((3π)/2) I_4 =2π ..... thus on calculation (attached photo) we get I_(10) =5π A general formula thus obtained ∫_0 ^(π/2) ((sin^2 (nθ))/(sin^2 θ))dθ=n((π/2))=I_n](https://www.tinkutara.com/question/Q54112.png)
Commented by rahul 19 last updated on 29/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
![3)∫_0 ^(π/4) ((ln(cotx))/([(sinx)^(2009) +(cosx)^(2009) ]^2 )) (sin2x)^(2008) dx ∫_0 ^(π/4) ((ln(cotx))/([(sinx)^a +(cosx)^a ]^2 ))×(2sinxcosx)^(a−1) dx ∫_0 ^(π/4) ((ln(cotx))/((cosx)^(2a) [1+(tanx)^a ]^2 ))×(2tanxcos^2 x)^(a−1) dx ∫_0 ^(π/4) ((−ln(tanx))/((cosx)^(2a) [1+(tanx)^a ]^2 ))×(2)^(a−1) ×(tanx)^(a−1) ×(cosx)^(2a−2) dx =2^(a−1) ∫_0 ^(π/4) ((−ln(tanx))/([1+(tanx)^a ]^2 ))×sec^2 x×(tanx)^(a−1) dx let k=(tanx)^a (dk/dx)=a(tanx)^(a−1) ×sec^2 x (dk/a)=(tanx)^(a−1) ×sec^2 xdx lnk=a(lntanx) =2^(a−1) ∫_0 ^1 (((−lnk)/a)/([1+k]^2 ))×(dk/a) =−2^(a−1) ∫_0 ^1 ((lnk)/([1+k]^2 ))dk now ∫((lnk)/((1+k)^2 )) lnk∫(dk/((1+k)^2 ))−[(d/dk)(lnk)∫(dk/((1+k)^2 ))]dk =((−lnk)/((1+k)))−∫(1/k)×((−1)/(1+k))dk =((−lnk)/((1+k)))+∫((k+1−k)/(k(k+1)))dk =((−lnk)/((1+k)))+∫(dk/k)−∫(dk/(k+1)) =((−lnk)/((1+k)))+lnk−ln(k+1) =((−lnk)/((1+k)))+ln((k/(k+1)))+c so answer of (−2^(a−1) )∫_0 ^1 ((lnk)/((1+k)^2 ))dk is =(−2^(a−1) )∣((−lnk)/(1+k))+ln((k/(k+1)))∣_0 ^1 =(−2^(a−1) )[(((−ln1)/(1+1))+ln((1/2))+((ln(0))/(1+0))−ln(0)] so in think ln(0)−ln(0) cancelled and answer is =(−2^(a−1) )×(−ln2)=2^(a−1) ln2=2^(2008) ln2 is answer](https://www.tinkutara.com/question/Q54113.png)