Menu Close

Evaluate-1-1-1-cot-1-1-1-x-2-cot-1-x-1-x-2-x-dx-2-0-pi-2-sin-2-10-sin-2-d-3-0-pi-4-ln-cotx-sinx-2009-cosx-200




Question Number 54070 by rahul 19 last updated on 28/Jan/19
Evaluate :  1)   ∫_(−1) ^( 1) cot^(−1) ((1/( (√(1−x^2 ))))).(cot^(−1) (x/( (√(1−(x^2 )^(∣x∣) )))))dx  2)   ∫_0 ^( (π/2))  ((sin^2 (10)θ)/(sin^2 θ)) dθ  3)   ∫_0 ^( (π/4))  ((ln(cotx))/(((sinx)^(2009) +(cosx)^(2009) )^2 )).(sin2x)^(2008) dx  4)  ∫_0 ^( 2)  ((4x+10)/((x^2 +5x+6)^2 )) dx.
Evaluate:1)11cot1(11x2).(cot1x1(x2)x)dx2)0π2sin2(10)θsin2θdθ3)0π4ln(cotx)((sinx)2009+(cosx)2009)2.(sin2x)2008dx4)024x+10(x2+5x+6)2dx.
Commented by maxmathsup by imad last updated on 28/Jan/19
4) ∫_0 ^2  ((4x+10)/((x^2 +5x +6)^2 )) =2 ∫_0 ^2   ((2x+5)/((x^2  +5x+6)^2 )) =[−2 (1/(x^2  +5x +6))]_0 ^2   =−2( (1/(20)) −(1/6)) =(1/3) −(1/(10)) =(7/(30)).
4)024x+10(x2+5x+6)2=2022x+5(x2+5x+6)2=[21x2+5x+6]02=2(12016)=13110=730.
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
Commented by rahul 19 last updated on 30/Jan/19
No prof. U are wrong...  It ain′t an odd function since  cot^(−1) (−x)=π−cot^(−1) (x) for all xεR.  Ans: ((π^2 ((√2)−1))/2).   Indeed a very beautiful problem.
Noprof.UarewrongItaintanoddfunctionsincecot1(x)=πcot1(x)forallxϵR.Ans:π2(21)2.Indeedaverybeautifulproblem.
Commented by Meritguide1234 last updated on 30/Jan/19
Commented by maxmathsup by imad last updated on 30/Jan/19
let  arccotan(t)=y ⇔t =cotan(y) =(1/(tany)) ⇒tany =(1/t) ⇒y =arctan((1/t))  =+^− (π/2)−arctan(t) ⇒arcotan(t) =+^− (π/2)−arctan(t)  ⇒  arcotan(−t)=+^− (π/2) +arctan(t)  you are right sir  the function is not odd...
letarccotan(t)=yt=cotan(y)=1tanytany=1ty=arctan(1t)=+π2arctan(t)arcotan(t)=+π2arctan(t)arcotan(t)=+π2+arctan(t)youarerightsirthefunctionisnotodd
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
2)∫_0 ^(π/2) ((sin^2 nθ)/(sin^2 θ))dθ    [n=10]  I_n =(1/2)∫_0 ^(π/2) ((1−cos2nθ)/(sin^2 θ))dθ  I_n −I_(n−2) =(1/2)∫_0 ^(π/2) ((cos(2n−2)θ−cos2nθ)/(sin^2 θ))dθ  =(1/2)∫_0 ^(π/2) ((2sin(2n−1)θsinθ)/(sin^2 θ))dθ  =∫_0 ^(π/2) ((sin(2n−1)θ)/(sinθ))dθ  J_n =I_n −I_(n−1)   J_n −J_(n−1) =∫_0 ^(π/2) ((sin(2n−1)θ−sin(2n−3)θ)/(sinθ))dθ  =∫_0 ^(π/2) ((2cos(2n−2)θsinθ)/(sinθ))dθ  =2∣((sin(2n−2)θ)/(2n−2))∣_0 ^(π/2) =0  so J_n −J_(n−1) =0  J_n =J_(n−1)   I_n −I_(n−1) =I_(n−1) −I_(n−2)   I_n =2I_(n−1) −I_(n−2)   ∫_0 ^(π/2) ((sin^2 (nθ))/(sin^2 θ))=I_n   we have to find I_(10)   I_n =2I_(n−1) −I_(n−2)                                     [I_0 =0]  I_2 =2I_1 −I_0 =2I_1 −0=2×(π/2) =π     [I_1 =(π/2)]  I_3 =2I_2 −I_1 =((3π)/2)  I_4 =2π  .....  thus on calculation (attached photo) we get  I_(10) =5π  A general formula thus obtained  ∫_0 ^(π/2) ((sin^2 (nθ))/(sin^2 θ))dθ=n((π/2))=I_n
2)0π2sin2nθsin2θdθ[n=10]In=120π21cos2nθsin2θdθInIn2=120π2cos(2n2)θcos2nθsin2θdθ=120π22sin(2n1)θsinθsin2θdθ=0π2sin(2n1)θsinθdθJn=InIn1JnJn1=0π2sin(2n1)θsin(2n3)θsinθdθ=0π22cos(2n2)θsinθsinθdθ=2sin(2n2)θ2n20π2=0soJnJn1=0Jn=Jn1InIn1=In1In2In=2In1In20π2sin2(nθ)sin2θ=InwehavetofindI10In=2In1In2[I0=0]I2=2I1I0=2I10=2×π2=π[I1=π2]I3=2I2I1=3π2I4=2π..thusoncalculation(attachedphoto)wegetI10=5πAgeneralformulathusobtained0π2sin2(nθ)sin2θdθ=n(π2)=In
Commented by rahul 19 last updated on 29/Jan/19
Thank you sir!
Thankyousir!
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jan/19
3)∫_0 ^(π/4) ((ln(cotx))/([(sinx)^(2009) +(cosx)^(2009) ]^2 )) (sin2x)^(2008) dx  ∫_0 ^(π/4) ((ln(cotx))/([(sinx)^a +(cosx)^a ]^2 ))×(2sinxcosx)^(a−1) dx  ∫_0 ^(π/4) ((ln(cotx))/((cosx)^(2a) [1+(tanx)^a ]^2 ))×(2tanxcos^2 x)^(a−1) dx  ∫_0 ^(π/4) ((−ln(tanx))/((cosx)^(2a) [1+(tanx)^a ]^2 ))×(2)^(a−1) ×(tanx)^(a−1) ×(cosx)^(2a−2) dx  =2^(a−1) ∫_0 ^(π/4) ((−ln(tanx))/([1+(tanx)^a ]^2 ))×sec^2 x×(tanx)^(a−1) dx  let k=(tanx)^a     (dk/dx)=a(tanx)^(a−1) ×sec^2 x  (dk/a)=(tanx)^(a−1) ×sec^2 xdx  lnk=a(lntanx)  =2^(a−1) ∫_0 ^1 (((−lnk)/a)/([1+k]^2 ))×(dk/a)  =−2^(a−1) ∫_0 ^1 ((lnk)/([1+k]^2 ))dk  now ∫((lnk)/((1+k)^2 ))  lnk∫(dk/((1+k)^2 ))−[(d/dk)(lnk)∫(dk/((1+k)^2 ))]dk  =((−lnk)/((1+k)))−∫(1/k)×((−1)/(1+k))dk  =((−lnk)/((1+k)))+∫((k+1−k)/(k(k+1)))dk  =((−lnk)/((1+k)))+∫(dk/k)−∫(dk/(k+1))  =((−lnk)/((1+k)))+lnk−ln(k+1)  =((−lnk)/((1+k)))+ln((k/(k+1)))+c  so answer of (−2^(a−1) )∫_0 ^1 ((lnk)/((1+k)^2 ))dk is  =(−2^(a−1) )∣((−lnk)/(1+k))+ln((k/(k+1)))∣_0 ^1     =(−2^(a−1) )[(((−ln1)/(1+1))+ln((1/2))+((ln(0))/(1+0))−ln(0)]  so in think ln(0)−ln(0) cancelled  and answer is  =(−2^(a−1) )×(−ln2)=2^(a−1) ln2=2^(2008) ln2 is answer
3)0π4ln(cotx)[(sinx)2009+(cosx)2009]2(sin2x)2008dx0π4ln(cotx)[(sinx)a+(cosx)a]2×(2sinxcosx)a1dx0π4ln(cotx)(cosx)2a[1+(tanx)a]2×(2tanxcos2x)a1dx0π4ln(tanx)(cosx)2a[1+(tanx)a]2×(2)a1×(tanx)a1×(cosx)2a2dx=2a10π4ln(tanx)[1+(tanx)a]2×sec2x×(tanx)a1dxletk=(tanx)adkdx=a(tanx)a1×sec2xdka=(tanx)a1×sec2xdxlnk=a(lntanx)=2a101lnka[1+k]2×dka=2a101lnk[1+k]2dknowlnk(1+k)2lnkdk(1+k)2[ddk(lnk)dk(1+k)2]dk=lnk(1+k)1k×11+kdk=lnk(1+k)+k+1kk(k+1)dk=lnk(1+k)+dkkdkk+1=lnk(1+k)+lnkln(k+1)=lnk(1+k)+ln(kk+1)+csoanswerof(2a1)01lnk(1+k)2dkis=(2a1)lnk1+k+ln(kk+1)01=(2a1)[(ln11+1+ln(12)+ln(0)1+0ln(0)]sointhinkln(0)ln(0)cancelledandansweris=(2a1)×(ln2)=2a1ln2=22008ln2isanswer

Leave a Reply

Your email address will not be published. Required fields are marked *