Menu Close

Evaluate-1-1-2x-332-x-998-4x-1668-sin-x-691-1-x-666-dx-




Question Number 151340 by peter frank last updated on 20/Aug/21
Evaluate  ∫_(−1) ^1 (((2x^(332) +x^(998) +4x^(1668) .sin x^(691) ))/(1+x^(666) ))dx
$$\mathrm{Evaluate} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(\mathrm{2x}^{\mathrm{332}} +\mathrm{x}^{\mathrm{998}} +\mathrm{4x}^{\mathrm{1668}} .\mathrm{sin}\:\mathrm{x}^{\mathrm{691}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }\mathrm{dx} \\ $$
Answered by qaz last updated on 20/Aug/21
∫_(−1) ^1 (((2x^(332) +x^(998) +4x^(1668) sin x^(691) )/(1+x^(666) ))dx  =2∫_0 ^1 ((x^(332) (2+x^(666) ))/(1+x^(666) ))dx  =2∫_0 ^1 x^(332) ((1/(1+x^(666) ))+1)dx  =2Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(666n+332) dx+(2/(333))  =2Σ_(n=0) ^∞ (((−1)^n )/(666n+333))+(2/(333))  =(2/(333))Σ_(n=0) ^∞ (((−1)^n )/(2n+1))+(2/(333))  =(2/(333))((π/4)+1)
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(\mathrm{2x}^{\mathrm{332}} +\mathrm{x}^{\mathrm{998}} +\mathrm{4x}^{\mathrm{1668}} \mathrm{sin}\:\mathrm{x}^{\mathrm{691}} \right.}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{332}} \left(\mathrm{2}+\mathrm{x}^{\mathrm{666}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{332}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }+\mathrm{1}\right)\mathrm{dx} \\ $$$$=\mathrm{2}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{666n}+\mathrm{332}} \mathrm{dx}+\frac{\mathrm{2}}{\mathrm{333}} \\ $$$$=\mathrm{2}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{666n}+\mathrm{333}}+\frac{\mathrm{2}}{\mathrm{333}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{333}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{333}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{333}}\left(\frac{\pi}{\mathrm{4}}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *