Menu Close

Evaluate-1-2-A-B-C-dt-and-1-2-A-B-C-dt-where-A-ti-3j-2tk-B-i-2j-2k-C-3i-tj-k-




Question Number 56803 by Tawa1 last updated on 24/Mar/19
Evaluate:   ∫_( 1) ^( 2)  (A∙B × C) dt    and   ∫_( 1) ^( 2)  A × (B × C)   dt  where,         A  =  ti − 3j + 2tk,       B  =  i − 2j + 2k,                           C  =  3i + tj − k
Evaluate:12(AB×C)dtand12A×(B×C)dtwhere,A=ti3j+2tk,B=i2j+2k,C=3i+tjk
Commented by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
∫_1 ^2 (A.B×C)dt ←is it correct question  i think it shoud be ∫_1 ^2 A.(B×C)dt
12(A.B×C)dtisitcorrectquestionithinkitshoudbe12A.(B×C)dt
Commented by Tawa1 last updated on 24/Mar/19
Yes sir. Help.
Yessir.Help.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
A×(B×C)=(A.C)B−(A.B)C    =(3t−3t−2t)(i−2j+2k)−(t+6+4t)(3i+tj−k)  =−2ti+4tj−4tk−(15ti+5t^2 j−5tk+18i+6tj−6k)  =i(−2t−15t−18)+j(4t−5t^2 +6t)+k(−4t+5t+6)  =i(−17t−18)+(10t−5t^2 )j+k(t+6)  ∫_1 ^2 A×(B×C)dt  ∣(((−17t^2 )/2)−18t)i+(((10t^2 )/2)−((5t^3 )/3))j+k((t^2 /2)+6t)∣_1 ^2   [i{((−17)/2)(2^2 −1^2 )−18(2−1)}+j{5(2^2 −1^2 )−(5/3)(2^3 −1^3 )}+k{(1/2)(2^2 −1^2 )+6(2−1)}]  [i(((−51)/2)−18)+j(15−((35)/3))+k((3/2)+6)]  =i(((−87)/2))+((10)/3)j+((15)/2)k
A×(B×C)=(A.C)B(A.B)C=(3t3t2t)(i2j+2k)(t+6+4t)(3i+tjk)=2ti+4tj4tk(15ti+5t2j5tk+18i+6tj6k)=i(2t15t18)+j(4t5t2+6t)+k(4t+5t+6)=i(17t18)+(10t5t2)j+k(t+6)12A×(B×C)dt(17t2218t)i+(10t225t33)j+k(t22+6t)12[i{172(2212)18(21)}+j{5(2212)53(2313)}+k{12(2212)+6(21)}][i(51218)+j(15353)+k(32+6)]=i(872)+103j+152k
Commented by Tawa1 last updated on 24/Mar/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
if the questionis →∫_1 ^2 (A.B)×Cdt then  ∫_1 ^2 (t+6+4t)(3i+tj−k)dt  ∫_1 ^2 [i(15t+18)+j(5t^2 +6t)+k(−5t−6)]  dt  ∣[i(((15t^2 )/2)+18t)+j(((5t^3 )/3)+3t^2 )+k(((−5t^2 )/2)−6t)]∣_1 ^2   =[i{((15)/2)(2^2 −1^2 )+18(2−1)}+j{(5/3)(2^3 −1^3 )+3(2^2 −1^2 )}−k{(5/2)(2^2 −1^2 )+6(2−1)}]  =[i(((45)/2)+18)+j(((35)/3)+9)−k(((15)/2)+6)]  =i(((81)/2))+j(((62)/3))−k(((27)/2))  now if the question →∫_1 ^2 A.(B×C)dt then     B×C=     ∣i            j              k∣                          ∣1           −2          2∣                           ∣3            t           −1∣                      =i(2−2t)−j(−1−6)+k(t+6)    =i(2−2t)+7j+k(t+6)  A.(B×C)  =(ti−3j+2tk).{i(2−2t)+7j+k(t+6)}  =(2t−2t^2 −21+2t^2 +12t)  =14t−21  ∫_1 ^2 (14t−21)dt  =∣((14t^2 )/2)−21t∣_1 ^2   =14(((2^2 −1^2 )/2))−21(2−1)  =21−21=0
ifthequestionis12(A.B)×Cdtthen12(t+6+4t)(3i+tjk)dt12[i(15t+18)+j(5t2+6t)+k(5t6)]dt[i(15t22+18t)+j(5t33+3t2)+k(5t226t)]12=[i{152(2212)+18(21)}+j{53(2313)+3(2212)}k{52(2212)+6(21)}]=[i(452+18)+j(353+9)k(152+6)]=i(812)+j(623)k(272)nowifthequestion12A.(B×C)dtthenB×C=ijk1223t1=i(22t)j(16)+k(t+6)=i(22t)+7j+k(t+6)A.(B×C)=(ti3j+2tk).{i(22t)+7j+k(t+6)}=(2t2t221+2t2+12t)=14t2112(14t21)dt=∣14t2221t12=14(22122)21(21)=2121=0
Commented by Tawa1 last updated on 24/Mar/19
I really appreciate your effort sir. God bless you sir.
Ireallyappreciateyoureffortsir.Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *