Question Number 56803 by Tawa1 last updated on 24/Mar/19

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19

Commented by Tawa1 last updated on 24/Mar/19

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
![A×(B×C)=(A.C)B−(A.B)C =(3t−3t−2t)(i−2j+2k)−(t+6+4t)(3i+tj−k) =−2ti+4tj−4tk−(15ti+5t^2 j−5tk+18i+6tj−6k) =i(−2t−15t−18)+j(4t−5t^2 +6t)+k(−4t+5t+6) =i(−17t−18)+(10t−5t^2 )j+k(t+6) ∫_1 ^2 A×(B×C)dt ∣(((−17t^2 )/2)−18t)i+(((10t^2 )/2)−((5t^3 )/3))j+k((t^2 /2)+6t)∣_1 ^2 [i{((−17)/2)(2^2 −1^2 )−18(2−1)}+j{5(2^2 −1^2 )−(5/3)(2^3 −1^3 )}+k{(1/2)(2^2 −1^2 )+6(2−1)}] [i(((−51)/2)−18)+j(15−((35)/3))+k((3/2)+6)] =i(((−87)/2))+((10)/3)j+((15)/2)k](https://www.tinkutara.com/question/Q56809.png)
Commented by Tawa1 last updated on 24/Mar/19

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
![if the questionis →∫_1 ^2 (A.B)×Cdt then ∫_1 ^2 (t+6+4t)(3i+tj−k)dt ∫_1 ^2 [i(15t+18)+j(5t^2 +6t)+k(−5t−6)] dt ∣[i(((15t^2 )/2)+18t)+j(((5t^3 )/3)+3t^2 )+k(((−5t^2 )/2)−6t)]∣_1 ^2 =[i{((15)/2)(2^2 −1^2 )+18(2−1)}+j{(5/3)(2^3 −1^3 )+3(2^2 −1^2 )}−k{(5/2)(2^2 −1^2 )+6(2−1)}] =[i(((45)/2)+18)+j(((35)/3)+9)−k(((15)/2)+6)] =i(((81)/2))+j(((62)/3))−k(((27)/2)) now if the question →∫_1 ^2 A.(B×C)dt then B×C= ∣i j k∣ ∣1 −2 2∣ ∣3 t −1∣ =i(2−2t)−j(−1−6)+k(t+6) =i(2−2t)+7j+k(t+6) A.(B×C) =(ti−3j+2tk).{i(2−2t)+7j+k(t+6)} =(2t−2t^2 −21+2t^2 +12t) =14t−21 ∫_1 ^2 (14t−21)dt =∣((14t^2 )/2)−21t∣_1 ^2 =14(((2^2 −1^2 )/2))−21(2−1) =21−21=0](https://www.tinkutara.com/question/Q56815.png)
Commented by Tawa1 last updated on 24/Mar/19
