Menu Close

Evaluate-1-2-x-4-x-dx-2-x-2-x-4-dx-3-x-2-x-4-dx-4-dx-2sinx-3secx-




Question Number 53119 by rahul 19 last updated on 18/Jan/19
Evaluate :  1) ∫(√((2−x)/(4+x))) dx  2) ∫ (√((x−2)/(x−4))) dx  3) ∫ (√((x−2)(x−4))) dx  4) ∫ (dx/(2sinx+3secx)) .
Evaluate:1)2x4+xdx2)x2x4dx3)(x2)(x4)dx4)dx2sin\boldsymbolx+3sec\boldsymbolx.
Commented by maxmathsup by imad last updated on 18/Jan/19
3) let I =∫(√((x−2)(x−4)))dx changement (√(x−2))=t give x−2=t^2  ⇒x=2+t^2   I =∫ t(√(2+t^2 −4))2tdt =2 ∫ t^2 (√(t^2 −2))dt =_(t=(√2)ch(u))    2 ∫ 2ch^2 t (√2)sh(u)(√2)sh(u) du  =8 ∫  ch^2 u sh^2 u du =8 ∫   (((2shu chu)^2 )/4) du =2 ∫ sh^2 u du  =2 ∫ ((ch(2u)−1)/2) du =∫ ch(2u)du −u +c  =(1/2)sh(2u) −u +c  but u=argch((t/( (√2)))) =ln((t/( (√2))) +(√((t^2 /2)−1))) ⇒  sh(2u) =((e^(2u) −e^(−2u) )/2) =(1/2){((t/( (√2))) +(√((t^2 /2)−1)))^2 −((t/( (√2))) +(√((t^2 /2)−1)))^(−2) } ⇒  I =(1/4){ (((√(x−2))/( (√2))) +(√(((x−2)/2)−1)))^2 −(((√(x−2))/( (√2)))+(√(((x−2)/2)−1)))^(−2)  −ln(((√(x−2))/( (√2))) +(√(((x−2)/2)−1))) +c  =(1/4){ (1/2)((√(x−2))+(√(x−4)))^2  −(2/(((√(x−2))+(√(x−4)))^2 ))}−ln((((√(x−2))+(√(x−4)))/( (√2)))) +c
3)letI=(x2)(x4)dxchangementx2=tgivex2=t2x=2+t2I=t2+t242tdt=2t2t22dt=t=2ch(u)22ch2t2sh(u)2sh(u)du=8ch2ush2udu=8(2shuchu)24du=2sh2udu=2ch(2u)12du=ch(2u)duu+c=12sh(2u)u+cbutu=argch(t2)=ln(t2+t221)sh(2u)=e2ue2u2=12{(t2+t221)2(t2+t221)2}I=14{(x22+x221)2(x22+x221)2ln(x22+x221)+c=14{12(x2+x4)22(x2+x4)2}ln(x2+x42)+c
Commented by Tawa1 last updated on 18/Jan/19
Sir please check your solution to my question  52841.  i asked for some clarification sir.  Thanks sir
Sirpleasecheckyoursolutiontomyquestion52841.iaskedforsomeclarificationsir.Thankssir
Commented by maxmathsup by imad last updated on 23/Jan/19
2) let I =∫(√((x−2)/(x−4)))dx   changement (√((x−2)/(x−4)))=t give ((x−2)/(x−4)) =t^2  ⇒  x−2 =t^2 x−4t^2  ⇒(1−t^2 )x =2−4t^2  ⇒x =((−4t^2  +2)/(1−t^2 )) =((4t^2 −2)/(t^2 −1)) ⇒  (dx/dt)=((8t(t^2 −1)−(4t^2 −2)2t)/((t^2 −1)^2 )) =((8t^3 −8t −8t^3  +4t)/((t^2 −1)^2 )) =((−4t)/((t^2 −1)^2 )) ⇒  I = ∫  t(((−4t)/((t^2 −1)^2 )))dt =−4 ∫  (t^2 /((t^2  −1)^2 ))dt  =−4∫((t^2 −1 +1)/((t^2 −1)^2 ))dt =−4 ∫   (dt/(t^2 −1)) −4 ∫   (dt/((t^2  −1)^2 )) but  ∫  (dt/(t^2  −1)) =(1/2)∫ ((1/(t−1)) −(1/(t+1)))dt =(1/2)ln∣((t−1)/(t+1))∣ +c_1   let decompose F(t)=(1/((t^2 −1)^2 )) ⇒F(t)=(1/((t−1)^2 (t+1)^2 ))  =(a/(t−1)) +(b/((t−1)^2 )) +(c/((t+1))) +(d/((t+1)^2 ))  b =lim_(t→1) (t−1)^2  F(t) =(1/4)  d =lim_(t→−1) (t+1)^2  F(t) =(1/4) ⇒F(t)=(a/(t−1)) +(1/(4(t−1)^2 )) +(c/(t+1)) +(1/(4(t+1)^2 ))  F(−t)=F(t) ⇒((−a)/(t+1)) +(1/(4(t+1)^2 )) + ((−c)/(t−1)) +(1/(4(t−1)^2 )) =F(t) ⇒c=−a ⇒  F(t) =(a/(t−1)) +(1/(4(t−1)^2 )) −(a/(t+1)) +(1/(4(t+1)^2 ))  F(0)=1 =−a +(1/4) −a +(1/4) ⇒−2a+(1/2) =1 ⇒−2a =(1/2) ⇒a =−(1/4) ⇒  F(x)=−(1/(4(t−1))) +(1/(4(t+1))) +(1/(4(t−1)^2 )) +(1/(4(t+1)^2 )) ⇒  ∫ (dt/((t^2 −1)^2 )) =(1/4)ln∣((t+1)/(t−1))∣−(1/(4(t−1))) −(1/(4(t+1))) +c_2   ⇒  I =−2ln∣((t−1)/(t+1))∣  −ln∣((t+1)/(t−1))∣ +(1/(t−1)) +(1/(t+1)) +C ⇒  I =ln∣((t+1)/(t−1))∣ +(1/(t−1)) +(1/(t+1)) +C  I =ln∣(((√((x−2)/(x−4)))+1)/( (√((x−2)/(x−4)))−1))∣ +(1/( (√((x−2)/(x−4)))−1)) +(1/( (√((x−2)/(x−4)))+1)) +C .
2)letI=x2x4dxchangementx2x4=tgivex2x4=t2x2=t2x4t2(1t2)x=24t2x=4t2+21t2=4t22t21dxdt=8t(t21)(4t22)2t(t21)2=8t38t8t3+4t(t21)2=4t(t21)2I=t(4t(t21)2)dt=4t2(t21)2dt=4t21+1(t21)2dt=4dtt214dt(t21)2butdtt21=12(1t11t+1)dt=12lnt1t+1+c1letdecomposeF(t)=1(t21)2F(t)=1(t1)2(t+1)2=at1+b(t1)2+c(t+1)+d(t+1)2b=limt1(t1)2F(t)=14d=limt1(t+1)2F(t)=14F(t)=at1+14(t1)2+ct+1+14(t+1)2F(t)=F(t)at+1+14(t+1)2+ct1+14(t1)2=F(t)c=aF(t)=at1+14(t1)2at+1+14(t+1)2F(0)=1=a+14a+142a+12=12a=12a=14F(x)=14(t1)+14(t+1)+14(t1)2+14(t+1)2dt(t21)2=14lnt+1t114(t1)14(t+1)+c2I=2lnt1t+1lnt+1t1+1t1+1t+1+CI=lnt+1t1+1t1+1t+1+CI=lnx2x4+1x2x41+1x2x41+1x2x4+1+C.
Answered by MJS last updated on 18/Jan/19
(1)  t=(√((4+x)/(2−x))) → x=((2(t^2 −2))/(t^2 +1)); dx=((√((2−x)^3 (4+x)))/3)dt  12∫(dt/((t^2 +1)^2 ))  u=arctan t → t=tan u; dt=(t^2 +1)du  12∫cos^2  u du
(1)t=4+x2xx=2(t22)t2+1;dx=(2x)3(4+x)3dt12dt(t2+1)2u=arctantt=tanu;dt=(t2+1)du12cos2udu
Answered by MJS last updated on 18/Jan/19
(2)  t=(√((x−4)/(x−2))) → x=((2(t^2 −2))/((t^2 −1))); dx=(√((x−4)(x−2)^3 ))dt  4∫(dt/((t^2 −1)^2 ))  u=arcsin (1/t) → t=(1/(sin u)); dt=−t(√(t^2 −1))du  −4∫((sin^2  u)/(cos^3  u))du=−4∫sec^3  u −sec u du
(2)t=x4x2x=2(t22)(t21);dx=(x4)(x2)3dt4dt(t21)2u=arcsin1tt=1sinu;dt=tt21du4sin2ucos3udu=4sec3usecudu
Answered by MJS last updated on 18/Jan/19
(3)  t=x−3 → dt=dx  ∫(√(t^2 −1))dt  u=arccos (1/t) → t=(1/(cos u)); dt=t(√(t^2 −1))du  ∫((sin^2  u)/(cos^3  u))du ...
(3)t=x3dt=dxt21dtu=arccos1tt=1cosu;dt=tt21dusin2ucos3udu
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19
1)∫((2−x)/( (√((4+x)(2−x)))))dx  ∫((2−x)/( (√(8−4x+2x−x^2 ))))dx  ∫((2−x)/( (√(8−2x−x^2 ))))  (1/2)∫((−2−2x+6)/( (√(8−2x−x^2 ))))dx  =(1/2)∫((d(8−2x−x^2 ))/( (√(8−2x−x^2 ))))+3∫(dx/( (√((3)^2 −(x+1)^2 ))))  =(1/2)×(((8−2x−x^2 )^(((−1)/2)+1) )/(((−1)/2)+1))+3sin^(−1) (((x+1)/3))+c  =(8−2x−x^2 )^(1/2) +3sin^(−1) (((x+1)/3))+c  2)∫((x−2)/( (√((x−2)(x−4)))))dx  ∫((x−2)/( (√(x^2 −6x+8))))dx  (1/2)∫((2x−6+2)/( (√(x^2 −6x+8))))dx  (1/2)∫((d(x^2 −6x+8))/( (√(x^2 −6x+8))))+∫(dx/( (√((x−3)^2 −1))))  (1/2)×(((x^2 −6x+8)^(((−1)/2)+1) )/(((−1)/2)+1))+ln{(x−3)+(√((x−3)^2 −1)) }+c  =(x^2 −6x+8)^(1/2) +ln{(x−3)+(√(x^2 −6x+8)) }+c  3∫(√((x−2)(x−4))) dx  ∫(√((x−3)^2 −1)) dx  =(((x−3))/2)(√((x−3)^2 −1)) −(1/2)ln{(x−3)+(√((x−3)^2 −1)) }+c  =(((x−3))/2)(√(x^2 −6x+8)) −(1/2)ln{(x−3)+(√((x^2 −6x+8))
1)2x(4+x)(2x)dx2x84x+2xx2dx2x82xx21222x+682xx2dx=12d(82xx2)82xx2+3dx(3)2(x+1)2=12×(82xx2)12+112+1+3sin1(x+13)+c=(82xx2)12+3sin1(x+13)+c2)x2(x2)(x4)dxx2x26x+8dx122x6+2x26x+8dx12d(x26x+8)x26x+8+dx(x3)2112×(x26x+8)12+112+1+ln{(x3)+(x3)21}+c=(x26x+8)12+ln{(x3)+x26x+8}+c3(x2)(x4)dx(x3)21dx=(x3)2(x3)2112ln{(x3)+(x3)21}+c=(x3)2x26x+812ln{(x3)+(x26x+8
Commented by rahul 19 last updated on 18/Jan/19
Thank you Sir!
ThankyouSir!
Commented by Otchere Abdullai last updated on 18/Jan/19
wow! well done sir!
wow!welldonesir!
Answered by MJS last updated on 18/Jan/19
(4)  =∫((cos x)/(3+cos x sin x))dx  Weyerstrass  t=tan (x/2) → x=2arctan t; dx=2cos^2  (x/2) dt=((2dt)/(t^2 +1))  cos x =−((t^2 −1)/(t^2 +1)); sin x =((2t)/(t^2 +1))  −2∫((t^2 −1)/((t^2 −2t+3)(3t^2 +2t+1)))dt  now decompose...  ((t^2 −1)/((t^2 −2t+3)(3t^2 +2t+1)))=(1/8)×((t+1)/(t^2 −2t+3))−(3/8)×((t+1)/(3t^2 +2t+1))  ((t+1)/(t^2 −2t+3))=((t−1)/(t^2 −2t+3))+(2/(t^2 −2t+3))  ((t+1)/(3t^2 +2t+1))=((6t+2)/(6(3t^2 +2t+1)))+(4/(6(3t^2 +2t+1)))=  =(1/3)×((3t+1)/(3t^2 +2t+1))+(2/3)×(1/(3t^2 +2t+1))  now use formulas
(4)=cosx3+cosxsinxdxWeyerstrasst=tanx2x=2arctant;dx=2cos2x2dt=2dtt2+1cosx=t21t2+1;sinx=2tt2+12t21(t22t+3)(3t2+2t+1)dtnowdecomposet21(t22t+3)(3t2+2t+1)=18×t+1t22t+338×t+13t2+2t+1t+1t22t+3=t1t22t+3+2t22t+3t+13t2+2t+1=6t+26(3t2+2t+1)+46(3t2+2t+1)==13×3t+13t2+2t+1+23×13t2+2t+1nowuseformulas
Commented by rahul 19 last updated on 18/Jan/19
Thank You Sir!
ThankYouSir!
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19
4)∫(dx/(2sinx+3secx))  ∫((cosxdx)/(3+2sinxcosx))  (1/2)∫((cosx−sinx+cosx+sinx)/(3+2sinxcosx))dx  (1/2)∫((cosx−sinx)/(2+(sinx+cosx)^2 ))dx+(1/2)∫((d(sinx−cosx))/(4−(1−2sinxcosx)))  (1/2)∫((d(sinx+cosx))/(((√2) )^2 +(sinx+cosx)^2 ))+(1/2)∫((d(sinx−cosx))/(4−(sinx−cosx)^2 ))←formula∫(dx/(a^2 −x^2 ))  (1/2)×(1/( (√2)))tan^(−1) (((sinx+cosx)/( (√2))))+(1/2)×(1/(2×2))ln(((2+sinx−cosx)/(2−sinx+cosx)))+c
4)dx2sinx+3secxcosxdx3+2sinxcosx12cosxsinx+cosx+sinx3+2sinxcosxdx12cosxsinx2+(sinx+cosx)2dx+12d(sinxcosx)4(12sinxcosx)12d(sinx+cosx)(2)2+(sinx+cosx)2+12d(sinxcosx)4(sinxcosx)2formuladxa2x212×12tan1(sinx+cosx2)+12×12×2ln(2+sinxcosx2sinx+cosx)+c

Leave a Reply

Your email address will not be published. Required fields are marked *