Menu Close

Evaluate-1-4-x-2-x-2x-1-dx-Question-ID-53-How-does-the-limits-change-in-the-solution-of-Q-No-53-




Question Number 15022 by Tinkutara last updated on 07/Jun/17
Evaluate: ∫_1 ^4 ((x^2  + x)/( (√(2x + 1)))) dx (Question ID:  53) How does the limits change in the  solution of Q. No. 53?
Evaluate:14x2+x2x+1dx(QuestionID:53)HowdoesthelimitschangeinthesolutionofQ.No.53?
Answered by Joel577 last updated on 07/Jun/17
Let u = 2x + 1  ⇔  x = ((u − 1)/2)        du = 2 dx  ∫_1 ^4  ((x(x + 1))/( (√(2x + 1)))) dx  =  ∫_1 ^4  ((((u − 1)/2) . ((u + 1)/2))/(2(√u)))  du  = (1/8) ∫_1 ^4  ((u^2  − 1)/( (√u))) du  = (1/8) ∫_1 ^4  (u^2  − 1)(u^(−1/2) ) du  = (1/8) ∫_1 ^4  u^(3/2)  − u^(−1/2)  du  = (1/8) [(2/5)(2x + 1)^(5/2)  − 2(2x + 1)^(1/2) ]_1 ^4   continue...
Letu=2x+1x=u12du=2dx41x(x+1)2x+1dx=41u12.u+122udu=1841u21udu=1841(u21)(u1/2)du=1841u3/2u1/2du=18[25(2x+1)5/22(2x+1)1/2]14continue

Leave a Reply

Your email address will not be published. Required fields are marked *