Menu Close

Evaluate-1-cos-pi-10-isin-pi-10-1-cos-pi-10-isin-pi-10-15-




Question Number 144697 by ZiYangLee last updated on 28/Jun/21
Evaluate (((1+cos (π/(10))−isin (π/(10)))/(1+cos (π/(10))+isin (π/(10)))))^(15) .
Evaluate(1+cosπ10isinπ101+cosπ10+isinπ10)15.
Answered by mathmax by abdo last updated on 28/Jun/21
1+cos((π/(10)))+isin((π/(10)))=2cos^2 ((π/(20)))+2isin((π/(20)))cos((π/(20)))  =2cos((π/(20)))e^((iπ)/(20))   and 1+cos((π/(10)))−isin((π/(10)))=2cos((π/(20)))e^(−((iπ)/(20)))  ⇒  A=((1+cos((π/(10)))−isin((π/(10))))/(1+cos((π/(10)))+isin((π/(10)))))=(e^(−((iπ)/(20))) /e^((iπ)/(20)) )=e^(−((iπ)/(10)))  ⇒  A^(15)  =e^(−((i15π)/(10)))  =e^(i(((20−5)π)/(10))))  =e^(2iπ) .e^(−((iπ)/2))  =−i
1+cos(π10)+isin(π10)=2cos2(π20)+2isin(π20)cos(π20)=2cos(π20)eiπ20and1+cos(π10)isin(π10)=2cos(π20)eiπ20A=1+cos(π10)isin(π10)1+cos(π10)+isin(π10)=eiπ20eiπ20=eiπ10A15=ei15π10=ei(205)π10)=e2iπ.eiπ2=i
Answered by som(math1967) last updated on 28/Jun/21
((1+cosθ−isinθ)/(1+cosθ+isinθ))   [θ=(π/(10))]  =(((1+cosθ−isinθ)^2 )/((1+cosθ)^2 −i^2 sin^2 θ))  =(((1+cosθ)^2 −2isinθ(1+cosθ)+i^2 sin^2 θ)/(1+2cosθ+cos^2 θ+sin^2 θ))  =(((1+cosθ)^2 −2isinθ(1+cosθ)−(1−cos^2 θ))/(2(1+cosθ)))  =(((1+cosθ)(1+cosθ−2isinθ−1+cosθ))/(2(1+cosθ)))  =((2(cosθ−isinθ))/2)=(cosθ−isinθ)  ∴ (((1+cos(π/(10))−isin(π/(10)))/(1+cos(π/(10))+isin(π/(10)))))=(cos(π/(10))−isin(π/(10)))  (((1+cos(π/(10))−isin(π/(10)))/(1+cos(π/(10))+isin(π/(10)))))^(15)   =(cos(π/(10))−isin(π/(10)))^(15) =cos((3π)/2)−isin((3π)/2)  =0−i(−1)=i ans
1+cosθisinθ1+cosθ+isinθ[θ=π10]=(1+cosθisinθ)2(1+cosθ)2i2sin2θ=(1+cosθ)22isinθ(1+cosθ)+i2sin2θ1+2cosθ+cos2θ+sin2θ=(1+cosθ)22isinθ(1+cosθ)(1cos2θ)2(1+cosθ)=(1+cosθ)(1+cosθ2isinθ1+cosθ)2(1+cosθ)=2(cosθisinθ)2=(cosθisinθ)(1+cosπ10isinπ101+cosπ10+isinπ10)=(cosπ10isinπ10)(1+cosπ10isinπ101+cosπ10+isinπ10)15=(cosπ10isinπ10)15=cos3π2isin3π2=0i(1)=ians

Leave a Reply

Your email address will not be published. Required fields are marked *