Evaluate-1-cos-pi-10-isin-pi-10-1-cos-pi-10-isin-pi-10-15- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 144697 by ZiYangLee last updated on 28/Jun/21 Evaluate(1+cosπ10−isinπ101+cosπ10+isinπ10)15. Answered by mathmax by abdo last updated on 28/Jun/21 1+cos(π10)+isin(π10)=2cos2(π20)+2isin(π20)cos(π20)=2cos(π20)eiπ20and1+cos(π10)−isin(π10)=2cos(π20)e−iπ20⇒A=1+cos(π10)−isin(π10)1+cos(π10)+isin(π10)=e−iπ20eiπ20=e−iπ10⇒A15=e−i15π10=ei(20−5)π10)=e2iπ.e−iπ2=−i Answered by som(math1967) last updated on 28/Jun/21 1+cosθ−isinθ1+cosθ+isinθ[θ=π10]=(1+cosθ−isinθ)2(1+cosθ)2−i2sin2θ=(1+cosθ)2−2isinθ(1+cosθ)+i2sin2θ1+2cosθ+cos2θ+sin2θ=(1+cosθ)2−2isinθ(1+cosθ)−(1−cos2θ)2(1+cosθ)=(1+cosθ)(1+cosθ−2isinθ−1+cosθ)2(1+cosθ)=2(cosθ−isinθ)2=(cosθ−isinθ)∴(1+cosπ10−isinπ101+cosπ10+isinπ10)=(cosπ10−isinπ10)(1+cosπ10−isinπ101+cosπ10+isinπ10)15=(cosπ10−isinπ10)15=cos3π2−isin3π2=0−i(−1)=ians Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-13627Next Next post: calculate-n-1-cos-n-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.