Menu Close

evaluate-2-0-2-x-1-x-2-4-dx-




Question Number 83675 by niroj last updated on 05/Mar/20
       evaluate:   2 ∫_0 ^( 2)  ((√(x+1))/(x^2 +4))dx
evaluate:202x+1x2+4dx
Commented by jagoll last updated on 05/Mar/20
(√(x+1)) = u ⇒ x^2 = (u^2 −1)^2   2x dx = 4u (u^2 −1)du  dx = ((2u(u^2 −1)du)/(u^2 −1)) = 2u du  x^2  +4 = (u^2 −1)^2 +4  2 ∫_1 ^(√3)  ((u (2u du))/(4+(u^2 −1)^2 ))   let u = sec t ⇒ du = sec t tan t dt
x+1=ux2=(u21)22xdx=4u(u21)dudx=2u(u21)duu21=2udux2+4=(u21)2+4231u(2udu)4+(u21)2letu=sectdu=secttantdt
Commented by niroj last updated on 05/Mar/20
thanks mr.jagoll try to solve if it is better tobe complete.
thanksmr.jagolltrytosolveifitisbettertobecomplete.
Answered by TANMAY PANACEA last updated on 05/Mar/20
I=∫((x+1)/( (√(x+1)) ×(x^2 +4)))dx  t^2 =x+1  ∫((t^2 ×2tdt)/(t(t^4 −2t^2 +1+4)))  2∫(t^2 /(t^4 −2t^2 +5))dt  2∫(dt/(t^2 +(5/t^2 )−2))  t^2 +(5/t^2 )=(t+((√5)/t))^2 −2(√5)   (d/dt)(t+((√5)/t))=1−((√5)/t^2 )  t^2 +(5/t^2 )=(t−((√5)/t))^2 +2(√5)   (d/dt)(t−((√5)/t))=1+((√5)/t^2 )  look  (1+((√5)/t^2 ))+(1−((√5)/t^2 ))=2  now∫((1−((√5)/t^2 )+1+((√5)/t^2 ))/(t^2 +(5/t^2 )−2))dt  ∫((d(t+((√5)/t)))/((t+((√5)/t))^2 −2(√5) −2))+∫((d(t−((√5)/t)))/((t−((√5)/t))^2 +2(√5) −2))  now pls use formula of   ∫(dx/(x^2 −a^2 ))  and ∫(dx/(x^2 +a^2 ))  2(√5) +2=((√(2(√5) +2)) )^2   ←as if a^2   2(√5) −2=((√(2(√5) −2)) )^2   so  (1/(2((√(2(√5) +2)) )))ln((((t+((√5)/t))−((√(2(√5) +2)) ))/((t+((√5)/t))+((√(2(√5) +2)) ))))+(1/( (√(2(√5) −2))))tan^(−1) (((t−((√5)/t))/( (√(2(√5) −2)))))  now pls replace t by (√(x+1)) and put upper   and lower limit
I=x+1x+1×(x2+4)dxt2=x+1t2×2tdtt(t42t2+1+4)2t2t42t2+5dt2dtt2+5t22t2+5t2=(t+5t)225ddt(t+5t)=15t2t2+5t2=(t5t)2+25ddt(t5t)=1+5t2look(1+5t2)+(15t2)=2now15t2+1+5t2t2+5t22dtd(t+5t)(t+5t)2252+d(t5t)(t5t)2+252nowplsuseformulaofdxx2a2anddxx2+a225+2=(25+2)2asifa2252=(252)2so12(25+2)ln((t+5t)(25+2)(t+5t)+(25+2))+1252tan1(t5t252)nowplsreplacetbyx+1andputupperandlowerlimit
Commented by niroj last updated on 05/Mar/20
you are absute amazing.nice solution..
youareabsuteamazing.nicesolution..
Commented by TANMAY PANACEA last updated on 05/Mar/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *