Question Number 117446 by Ar Brandon last updated on 11/Oct/20
$$\mathrm{Evaluate}\:\int\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$
Answered by Ar Brandon last updated on 11/Oct/20
$$\mathcal{I}=\int\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$$$\:\:\:=\int\frac{\left({x}^{\mathrm{2}} −\mathrm{5}\right)+\left({x}^{\mathrm{2}} +\mathrm{5}\right)+\left({x}^{\mathrm{2}} −\mathrm{5}\right)}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x}=\int\frac{\left({x}^{\mathrm{2}} +\mathrm{5}\right)+\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{5}\right)}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$$$\:\:\:=\int\frac{{x}^{\mathrm{2}} +\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x}+\mathrm{2}\int\frac{{x}^{\mathrm{2}} −\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$$$\:\:\:=\int\frac{\mathrm{1}+\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\mathrm{6}+\frac{\mathrm{25}}{{x}^{\mathrm{2}} }}\mathrm{d}{x}+\mathrm{2}\int\frac{\mathrm{1}−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\mathrm{6}+\frac{\mathrm{25}}{{x}^{\mathrm{2}} }}\mathrm{d}{x} \\ $$$$\:\:\:=\int\frac{\mathrm{1}+\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}{\left({x}−\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} +\mathrm{16}}\mathrm{d}{x}+\mathrm{2}\int\frac{\mathrm{1}−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}{\left({x}+\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} −\mathrm{4}}\mathrm{d}{x} \\ $$$$\:\:\:=\int\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} +\mathrm{16}}+\mathrm{2}\int\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} −\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{Arctan}\left(\frac{\mathrm{u}}{\mathrm{4}}\right)−\frac{\mathrm{2}}{\mathrm{2}}\mathrm{Arctanh}\left(\frac{\mathrm{v}}{\mathrm{2}}\right)+\mathcal{C} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{Arctan}\left[\frac{{x}^{\mathrm{2}} −\mathrm{5}}{\mathrm{4}{x}}\right]−\mathrm{Arctanh}\left[\frac{{x}^{\mathrm{2}} +\mathrm{5}}{\mathrm{2}{x}}\right]+\mathcal{C} \\ $$
Answered by TANMAY PANACEA last updated on 11/Oct/20
$$\int\frac{\mathrm{3}−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\frac{\mathrm{25}}{{x}^{\mathrm{2}} }+\mathrm{6}}{dx} \\ $$$$\int\frac{\mathrm{1}−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }+\mathrm{2}}{{x}^{\mathrm{2}} +\frac{\mathrm{25}}{{x}^{\mathrm{2}} }+\mathrm{6}}{dx} \\ $$$$\int\frac{{d}\left({x}+\frac{\mathrm{5}}{{x}}\right)}{\left({x}+\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} −\mathrm{10}+\mathrm{6}}+\int\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{25}+\mathrm{6}{x}^{\mathrm{2}} } \\ $$$$\int\frac{{d}\left({x}+\frac{\mathrm{5}}{{x}}\right)}{\left({x}+\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} −\mathrm{4}}+\int\frac{\frac{{d}}{{dx}}\left({x}+\frac{\mathrm{5}}{{x}}\right)+\frac{{d}}{{dx}}\left({x}−\frac{\mathrm{5}}{{x}}\right)}{{x}^{\mathrm{2}} +\frac{\mathrm{25}}{{x}^{\mathrm{2}} }+\mathrm{6}} \\ $$$${now}\:{use}\:{formula} \\ $$$$\int\frac{{d}\left({x}+\frac{\mathrm{5}}{{x}}\right)}{\left({x}+\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} −\mathrm{4}}+\int\frac{{d}\left({x}+\frac{\mathrm{5}}{{x}}\right)}{\left({x}+\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} −\mathrm{10}+\mathrm{6}}+\int\frac{{d}\left({x}−\frac{\mathrm{5}}{{x}}\right)}{\left({x}−\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}+\mathrm{6}} \\ $$$$\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{4}}+\int\frac{{dk}}{{k}^{\mathrm{2}} +\mathrm{8}} \\ $$$$ \\ $$